(def-constant discrete%set
"lambda(s:sets[rr], forsome(a:rr,0<a and forall(x,y:rr, x<y implies a<=y-x)))"
(theory h-o-real-arithmetic))
(def-theorem discrete-sets-contain-sup-lemma
"forall(s:sets[rr], discrete%set(s) and #(sup(s)) implies
forsome(a:rr,0<a and forall(x:rr, x in s implies x=sup(s) or x<=sup(s)-a)))"
(theory h-o-real-arithmetic)
(proof
(
(unfold-single-defined-constant (0) discrete%set)
direct-and-antecedent-inference-strategy
auto-instantiate-existential
(cut-with-single-formula "forsome(z:rr, z in s and x<z and sup(s)-a<=z and z<=sup(s))")
(antecedent-inference "with(a,x:rr,s:sets[rr],
forsome(z:rr,
z in s and x<z and sup(s)-a<=z and z<=sup(s)));")
(instantiate-universal-antecedent "with(a:rr,forall(x,y:rr,x<y implies a<=y-x));" ("x" "z"))
simplify
(cut-with-single-formula "forall(z:rr, z<sup(s) implies forsome(x:rr, x in s and z<x))")
(instantiate-universal-antecedent "with(s:sets[rr],
forall(z:rr,
z<sup(s) implies forsome(x:rr,x in s and z<x)));" ("max(x,sup(s)-a)"))
(contrapose "with(a:rr,s:sets[rr],x:rr,not(max(x,sup(s)-a)<sup(s)));")
(weaken (0))
(cut-with-single-formula "x<=sup(s)")
(unfold-single-defined-constant (0) max)
(case-split-on-conditionals (0))
(apply-macete-with-minor-premises tr%minorizes-property-of-prec%sup)
direct-inference
(instantiate-existential ("x"))
simplify
(instantiate-existential ("x_$0"))
(cut-with-single-formula "x<=max(x,sup(s)-a)")
simplify
(apply-macete-with-minor-premises maximum-1st-arg)
(cut-with-single-formula "sup(s)-a<=max(x,sup(s)-a)")
simplify
(apply-macete-with-minor-premises maximum-2nd-arg)
(apply-macete-with-minor-premises tr%minorizes-property-of-prec%sup)
direct-inference
(instantiate-existential ("x_$0"))
simplify
direct-and-antecedent-inference-strategy
(force-substitution "z" "sup(s)-(sup(s)-z)" (0))
(apply-macete-with-minor-premises sup-minus-epsilon-corollary)
simplify
simplify
)))
(def-theorem empty-indic-sup-is-undefined
"not(#(sup(empty_indic{rr})))"
(theory h-o-real-arithmetic)
(proof
(
(cut-with-single-formula " #(sup(empty_indic{rr})) implies sup(empty_indic{rr})<=sup(empty_indic{rr})-1")
(antecedent-inference "with(p,q:prop, p implies q)")
(simplify-antecedent "sup(empty_indic{rr})<=sup(empty_indic{rr})-1;")
direct-and-antecedent-inference-strategy
(apply-macete-with-minor-premises tr%lub-property-of-prec%sup)
direct-and-antecedent-inference-strategy
(unfold-single-defined-constant (0) majorizes)
direct-and-antecedent-inference-strategy
(contrapose "with(x_$0:rr,x_$0 in empty_indic{rr});")
simplify-insistently
)))
(def-theorem discrete-sets-contain-sup
"forall(s:sets[rr], discrete%set(s) and #(sup(s)) implies sup(s) in s)"
(theory h-o-real-arithmetic)
(proof
(
direct-and-antecedent-inference-strategy
(cut-with-single-formula "forsome(a:rr,0<a and forall(x:rr, x in s implies x=sup(s) or x<=sup(s)-a))")
(antecedent-inference "with(s:sets[rr],
forsome(a:rr,
0<a
and
forall(x:rr,x in s implies x=sup(s) or x<=sup(s)-a)));")
(antecedent-inference "with(s:sets[rr],a:rr,
0<a
and
forall(x:rr,x in s implies x=sup(s) or x<=sup(s)-a));")
(contrapose "with(s:sets[rr],discrete%set(s));")
(cut-with-single-formula "sup(s)<=sup(s)-a")
(contrapose "with(a:rr,s:sets[rr],sup(s)<=sup(s)-a);")
simplify
(apply-macete-with-minor-premises tr%lub-property-of-prec%sup)
direct-inference
(unfold-single-defined-constant (0) majorizes)
direct-and-antecedent-inference-strategy
(backchain "with(a:rr,s:sets[rr],
forall(x:rr,x in s implies x=sup(s) or x<=sup(s)-a));")
direct-and-antecedent-inference-strategy
(contrapose "with(s:sets[rr],not(sup(s) in s));")
(backchain-backwards "with(s:sets[rr],x_$0:rr,x_$0=sup(s));")
(apply-macete-with-minor-premises discrete-sets-contain-sup-lemma)
direct-and-antecedent-inference-strategy
)))
(def-constant preceding
"lambda(s:sets[rr],a:rr, sup(indic{x:rr,x in s and x<a}))"
(theory h-o-real-arithmetic))
(def-theorem preceding-for-discrete-sets
"forall(s:sets[rr], x:rr, discrete%set(s) and #(preceding(s,x)) implies preceding(s,x) in s)"
(proof
(
(unfold-single-defined-constant (0 1) preceding)
direct-and-antecedent-inference-strategy
(cut-with-single-formula "forall(a,b:sets[rr],sup(a) in a and a subseteq b implies sup(a) in b)")
(backchain "forall(a,b:sets[rr],sup(a) in a and a subseteq b implies sup(a) in b)")
direct-and-antecedent-inference-strategy
(apply-macete-with-minor-premises discrete-sets-contain-sup)
direct-and-antecedent-inference-strategy
(incorporate-antecedent "with(s:sets[rr],discrete%set(s));")
unfold-defined-constants
simplify-insistently
simplify
))
(theory h-o-real-arithmetic))
(def-theorem preceding-defined
"forall(s:sets[rr], x:rr, #(preceding(s,x)) iff forsome(y:rr, y in s and y<x))"
(theory h-o-real-arithmetic)
(proof
(
(unfold-single-defined-constant (0) preceding)
direct-and-antecedent-inference-strategy
(cut-with-single-formula "forall(s:sets[rr], s =empty_indic{rr} implies not(#(sup(s))))")
(contrapose "with(t:rr, #(t))")
(backchain "forall(s:sets[rr],s=empty_indic{rr} implies not(#(sup(s))));")
simplify-insistently
extensionality
beta-reduce-repeatedly
direct-and-antecedent-inference-strategy
(instantiate-universal-antecedent "with(x:rr,s:sets[rr],forall(y:rr,not(y in s) or not(y<x)));" ("x_0"))
simplify
simplify
direct-and-antecedent-inference-strategy
(backchain "with(s_$0:sets[rr],s_$0=empty_indic{rr});")
(apply-macete-with-minor-premises empty-indic-sup-is-undefined)
(apply-macete-with-minor-premises tr%prec%sup-defined)
direct-and-antecedent-inference-strategy
simplify-insistently
auto-instantiate-existential
(instantiate-existential ("x"))
(unfold-single-defined-constant (0) majorizes)
simplify-insistently
)))