(def-constant set%prec "lambda(a,b:sets[ind_1], a subseteq b)" (theory generic-theory-1))
(def-theorem () "forall(a,c:sets[ind_1], forsome(b:sets[ind_1],a set%prec b and b set%prec c) implies a set%prec c)" (theory generic-theory-1) (proof ( unfold-defined-constants direct-and-antecedent-inference-strategy (apply-macete-with-minor-premises tr%subseteq-transitivity) auto-instantiate-existential )))
(def-theorem () "forall(a:sets[ind_1],a set%prec a)" (theory generic-theory-1) (proof ( (unfold-single-defined-constant (0) set%prec) )))
(def-theorem () "forall(a,b:sets[ind_1], a set%prec b and b set%prec a implies a=b)" (theory generic-theory-1) (proof ( unfold-defined-constants (apply-macete-with-minor-premises tr%subseteq-antisymmetry) )))
(def-theorem () "forall(p:[sets[ind_1],prop], nonvacuous_q{p} and forsome(alpha:sets[ind_1], forall(theta:sets[ind_1], p(theta) implies theta set%prec alpha)) implies forsome(gamma:sets[ind_1], forall(theta:sets[ind_1], p(theta) implies theta set%prec gamma) and forall(gamma_1:sets[ind_1], forall(theta:sets[ind_1], p(theta) implies theta set%prec gamma_1) implies gamma set%prec gamma_1)))" (theory generic-theory-1) (proof ( unfold-defined-constants direct-and-antecedent-inference-strategy (instantiate-existential ("indic{x:ind_1, forsome(b:sets[ind_1], p(b) and x in b)}")) simplify-insistently direct-and-antecedent-inference-strategy auto-instantiate-existential simplify-insistently )))
(def-translation complete-partial-order-to-generic-theory-1 (source complete-partial-order) (target generic-theory-1) (fixed-theories h-o-real-arithmetic) (constant-pairs (prec set%prec)) (sort-pairs (uu "sets[ind_1]")) (theory-interpretation-check using-simplification))
(def-transported-symbols monotone (translation complete-partial-order-to-generic-theory-1) (renamer cpo-gt-renamer) )
(def-overloading monotone (complete-partial-order monotone) (generic-theory-1 gt%monotone))
(def-theorem monotonicity-of-sb-functional "forall(f:[ind_2,ind_1],g:[ind_1,ind_2], monotone(lambda(x:sets[ind_1],image(f,image(g,x)^^)^^)))" (theory generic-theory-2) lemma (proof ( (unfold-single-defined-constant-globally gt%monotone) (unfold-single-defined-constant-globally set%prec) simplify-insistently (prove-by-logic-and-simplification 3) )))