(def-theorem metric-separation-for-reals
"forall(x,y:rr,x=y
iff
forall(r:rr,0<r implies forsome(z:rr, abs(z-x)<=r and abs(z-y)<=r)))"
(theory h-o-real-arithmetic)
(proof
(
direct-and-antecedent-inference-strategy
(backchain "with(y,x:rr,x=y);")
(instantiate-existential ("y"))
(block
(script-comment "proving abs(y-y)=0")
(unfold-single-defined-constant (0) abs)
(prove-by-logic-and-simplification 3))
(instantiate-universal-antecedent "with(p:prop,p);" ("abs(x-y)/3"))
(contrapose "with(p:prop,p);")
(block
(script-comment "prove 0<abs(x-y)/3")
(unfold-single-defined-constant (0) abs)
(case-split ("0<=x-y"))
simplify
simplify)
(block
(script-comment "the distance from z_$0 to both x and y is less
than a third of the distance between x and y")
(apply-macete-with-minor-premises point-separation-for-rr-distance)
beta-reduce-repeatedly
(cut-with-single-formula "abs(x-y)<=abs(z_$0-y)+abs(z_$0-x)")
simplify)
(weaken (0 1))
(force-substitution "x-y" "(x-z_$0)+(z_$0-y)" (0))
(force-substitution "abs(z_$0-y)+abs(z_$0-x)" "abs(x-z_$0)+abs(z_$0-y)" (0))
(apply-macete-with-minor-premises triangle-inequality)
(block
(script-comment "another triviality.")
(force-substitution "z_$0-x" "[-1]*(x-z_$0)" (0))
(apply-macete-with-minor-premises absolute-value-product)
(apply-macete absolute-value-non-positive)
simplify
simplify)
simplify
)))
(def-constant lim%rr
"lambda(s:[zz,rr],iota(x:rr, forall(eps:rr,0<eps implies forsome(n:zz,
forall(p:zz, n<=p implies abs(x-s(p))<=eps)))))"
(theory h-o-real-arithmetic))
(def-theorem characterization-of-real-limit
"forall(s:[zz,rr],x:rr,lim%rr(s)=x iff forall(eps:rr,0<eps implies forsome(n:zz,
forall(p:zz, n<=p implies abs(x-s(p))<=eps))))"
(theory h-o-real-arithmetic)
(proof
(
(unfold-single-defined-constant (0) lim%rr)
direct-and-antecedent-inference-strategy
(contrapose "with(x,r:rr,r=x);")
(block
(eliminate-defined-iota-expression 0 w)
(contrapose "with(p:prop,forall(eps:rr,0<eps implies forsome(n:zz,p)));")
auto-instantiate-existential
(backchain "with(x,w:rr,w=x);")
(backchain "with(p:prop,forall(n:zz,forsome(p:zz,with(p:prop,p))));"))
(apply-macete-with-minor-premises eliminate-iota-macete)
direct-and-antecedent-inference-strategy
(block
(script-comment "uniqueness.")
(apply-macete-with-minor-premises metric-separation-for-reals)
direct-and-antecedent-inference-strategy
(instantiate-universal-antecedent
"with(p:prop,forall(eps:rr,0<eps implies forsome(n:zz,p)));"
("r"))
(instantiate-universal-antecedent
"with(p:prop,forall(eps:rr,0<eps implies forsome(n:zz,p)));"
("r"))
(instantiate-existential ("s(max(n,n_$0))"))
(cut-with-single-formula "forall(x,y:rr,abs(x-y)=abs(y-x))")
(backchain "with(p:prop,forall(x,y:rr,p));")
(backchain "with(r:rr,s:[zz,rr],b_$0:rr,n:zz,
forall(p:zz,n<=p implies abs(b_$0-s(p))<=r));")
(apply-macete-with-minor-premises maximum-1st-arg)
(cut-with-single-formula "abs(b_$0-s(max(n,n_$0)))<=r")
(script-comment "we needed definedness here.")
(force-substitution "y-x" "[-1]*(x-y)" (0))
(apply-macete-with-minor-premises absolute-value-product)
(apply-macete absolute-value-non-positive)
simplify
simplify
(cut-with-single-formula "forall(x,y:rr, abs(x-y)=abs(y-x))")
(backchain "with(p:prop,forall(x,y:rr,p));")
(backchain "with(r:rr,s:[zz,rr],x:rr,n_$0:zz,
forall(p:zz,n_$0<=p implies abs(x-s(p))<=r));")
(apply-macete-with-minor-premises maximum-2nd-arg)
(cut-with-single-formula "abs(b_$0-s(max(n,n_$0)))<=r")
(backchain "with(r:rr,s:[zz,rr],b_$0:rr,n:zz,
forall(p:zz,n<=p implies abs(b_$0-s(p))<=r));")
(apply-macete-with-minor-premises maximum-1st-arg))
)))
(def-theorem abs-free-characterization-of-real-limit
"forall(s:[zz,rr],x:rr,
lim%rr(s)=x
iff
forall(eps:rr,
0<eps
implies
forsome(n:zz,
forall(p:zz,
n<=p implies x-eps<=s(p) and s(p)<=x+eps))))"
(theory h-o-real-arithmetic)
(proof
(
(apply-macete-with-minor-premises characterization-of-real-limit)
(force-substitution "abs(x-s(p))<=eps" "x-eps<=s(p) and s(p)<=x+eps" (0))
(case-split ("#(s(p))"))
(unfold-single-defined-constant (0) abs)
(case-split ("s(p)<=x"))
simplify
simplify
direct-and-antecedent-inference-strategy
)))
(def-theorem existence-of-real-limit
"forall(s:[zz,rr],
#(lim%rr(s))
iff
forsome(x:rr,
forall(eps:rr,
0<eps
implies
forsome(n:zz,
forall(p:zz,n<=p implies abs(x-s(p))<=eps)))))"
(theory h-o-real-arithmetic)
(proof
(
direct-and-antecedent-inference-strategy
(cut-with-single-formula "lim%rr(s)=lim%rr(s)")
(incorporate-antecedent "with(s:[zz,rr],lim%rr(s)=lim%rr(s));")
(apply-macete-with-minor-premises characterization-of-real-limit)
direct-inference
(instantiate-existential ("lim%rr(s)"))
(cut-with-single-formula "lim%rr(s)=x")
(apply-macete-with-minor-premises characterization-of-real-limit)
)
))
(def-theorem homogeneity-of-real-limit
"forall(a:[zz,rr], b:rr, #(lim%rr(a)) implies
lim%rr(lambda(n:zz,b*a(n)))=b*lim%rr(a))"
(theory h-o-real-arithmetic)
(proof
(
direct-and-antecedent-inference-strategy
(cut-with-single-formula "forsome(s:rr, lim%rr(a)=s)")
(antecedent-inference "with(a:[zz,rr],forsome(s:rr,lim%rr(a)=s));")
(backchain "with(s:rr,a:[zz,rr],lim%rr(a)=s);")
(apply-macete-with-minor-premises characterization-of-real-limit)
direct-and-antecedent-inference-strategy
beta-reduce-with-minor-premises
(force-substitution "b*s-b*a(p)" "b*(s-a(p))" (0))
(apply-macete-with-minor-premises absolute-value-product)
(case-split ("abs(b)=0"))
simplify
(incorporate-antecedent "with(a:[zz,rr],#(lim%rr(a)));")
(apply-macete-with-minor-premises existence-of-real-limit)
direct-and-antecedent-inference-strategy
(instantiate-universal-antecedent
"with(p:prop, forall(eps:rr, 0<eps implies p))" ("1"))
(simplify-antecedent "not(0<1);")
(instantiate-existential ("n"))
(instantiate-universal-antecedent "with(a:[zz,rr],x:rr,n:zz,
forall(p:zz,n<=p implies abs(x-a(p))<=1));" ("p"))
(force-substitution "abs(b)*abs(s-a(p))<=eps" "abs(s-a(p))<=eps/abs(b)" (0))
(incorporate-antecedent "with(s:rr,a:[zz,rr],lim%rr(a)=s);")
(apply-macete-with-minor-premises characterization-of-real-limit)
direct-and-antecedent-inference-strategy
(instantiate-universal-antecedent
"with(p:prop, forall(eps:rr, 0<eps implies p))" ("eps/abs(b)"))
(contrapose "with(b,eps:rr,not(0<eps/abs(b)));")
simplify
(cut-with-single-formula "0<abs(b)")
simplify
(apply-macete-with-minor-premises positivity-of-inverse)
simplify
(apply-macete-with-minor-premises fractional-expression-manipulation)
simplify
simplify
(instantiate-existential ("lim%rr(a)"))
)))
(def-theorem lim%rr-negative
"forall(a:[zz,rr], b:rr,
lim%rr(lambda(n:zz,[-1]*a(n)))==-lim%rr(a))"
(theory h-o-real-arithmetic)
(proof
(
insistent-direct-inference-strategy
(antecedent-inference "with(a:[zz,rr],
#(lim%rr(lambda(n:zz,[-1]*a(n)))) or #(-lim%rr(a)));")
(force-substitution "a" "lambda(n:zz,[-1]*lambda(n:zz,[-1]*a(n))(n))" (1))
(apply-macete-locally homogeneity-of-real-limit (0) "lim%rr(lambda(n:zz,[-1]*lambda(n:zz,[-1]*a(n))(n)))")
simplify
insistent-direct-inference
extensionality
direct-and-antecedent-inference-strategy
beta-reduce-repeatedly
simplify
(apply-macete-with-minor-premises homogeneity-of-real-limit)
simplify
)))
(def-theorem lim%rr-preserves-upper-bound
"forall(a:[nn,rr], b:rr, forall(i:nn, a(i)<=b) and #(lim%rr(a)) implies lim%rr(a)<=b)"
(theory h-o-real-arithmetic)
(proof
(
direct-and-antecedent-inference-strategy
(cut-with-single-formula "forsome(s:rr, lim%rr(a)=s)")
(antecedent-inference "with(a:[nn,rr],forsome(s:rr,lim%rr(a)=s));")
(backchain "with(s:rr,a:[nn,rr],lim%rr(a)=s);")
(incorporate-antecedent "with(s:rr,a:[nn,rr],lim%rr(a)=s);")
(apply-macete-with-minor-premises abs-free-characterization-of-real-limit)
direct-and-antecedent-inference-strategy
(instantiate-universal-antecedent
"with(p:prop, forall(eps:rr, 0<eps implies p))"
("(s-b)/2"))
simplify
(instantiate-universal-antecedent "with(a:[nn,rr],b,s:rr,n_$0:zz,
forall(p_$0:zz,
n_$0<=p_$0
implies
s-(s-b)/2<=a(p_$0) and a(p_$0)<=s+(s-b)/2));" ("n_$0"))
(simplify-antecedent "with(n_$0:zz,not(n_$0<=n_$0));")
(instantiate-universal-antecedent "with(b:rr,a:[nn,rr],forall(i:nn,a(i)<=b));" ("n_$0"))
simplify
(instantiate-existential ("lim%rr(a)"))
)))
(def-theorem lim%rr-preserves-lower-bound
"forall(a:[nn,rr], b:rr, forall(i:nn, b<=a(i)) and #(lim%rr(a))
implies
b<=lim%rr(a))"
(theory h-o-real-arithmetic)
(proof
(
direct-and-antecedent-inference-strategy
(cut-with-single-formula "lim%rr(lambda(n:zz,[-1]*a(n)))<=-b")
(incorporate-antecedent "with(b:rr,a:[nn,rr],lim%rr(lambda(n:zz,[-1]*a(n)))<=-b);")
(apply-macete-with-minor-premises homogeneity-of-real-limit)
simplify
(apply-macete-with-minor-premises lim%rr-preserves-upper-bound)
direct-and-antecedent-inference-strategy
simplify
(apply-macete-with-minor-premises homogeneity-of-real-limit)
simplify
(weaken (0 1))
sort-definedness
direct-and-antecedent-inference-strategy
(case-split ("#(xx_0,zz)"))
(beta-reduce-antecedent "with(xx_0:ind,a:[nn,rr],#(lambda(n:zz,[-1]*a(n))(xx_0)));")
)))
(def-constant bounded%non%decreasing%seq
"lambda(a:[nn,rr], forsome(b:rr, forall(n:nn, a(n)<=a(n+1) and a(n)<=b)))"
(theory h-o-real-arithmetic))
(def-theorem bounded%non%decreasing%seq-convergent
"forall(a:[nn,rr], bounded%non%decreasing%seq(a)
implies
forall(n:nn, a(n)<=lim%rr(a)))"
(theory h-o-real-arithmetic)
(proof
(
(unfold-single-defined-constant (0) bounded%non%decreasing%seq)
direct-and-antecedent-inference-strategy
(instantiate-theorem completeness ("lambda(x:rr, forsome(n:nn, x=a(n)))"))
(contrapose "with(a:[nn,rr],
forall(x_0:rr,not(lambda(x:rr,forsome(n:nn,x=a(n)))(x_0))));")
(instantiate-existential ("a(0)"))
beta-reduce-with-minor-premises
(instantiate-existential ("0"))
simplify
(instantiate-universal-antecedent "with(b:rr,a:[nn,rr],forall(n:nn,a(n)<=a(n+1) and a(n)<=b));" ("0"))
(beta-reduce-antecedent "with(a:[nn,rr],
forall(alpha:rr,
forsome(theta:rr,
lambda(x:rr,forsome(n:nn,x=a(n)))(theta)
and
not(theta<=alpha))));")
(contrapose "with(a:[nn,rr],
forall(alpha:rr,
forsome(theta:rr,
forsome(n:nn,theta=a(n)) and not(theta<=alpha))));")
(instantiate-existential ("b"))
(antecedent-inference "with(a:[nn,rr],theta:rr,forsome(n:nn,theta=a(n)));")
(backchain "with(n_$0:nn,a:[nn,rr],theta:rr,theta=a(n_$0));")
(beta-reduce-antecedent "with(gamma:rr,a:[nn,rr],
forall(theta:rr,
lambda(x:rr,forsome(n:nn,x=a(n)))(theta)
implies
theta<=gamma));")
(cut-with-single-formula "lim%rr(a)=gamma")
(backchain "with(gamma:rr,a:[nn,rr],lim%rr(a)=gamma);")
(backchain "with(gamma:rr,a:[nn,rr],
forall(theta:rr,
forsome(n:nn,theta=a(n)) implies theta<=gamma));")
(instantiate-existential ("n"))
(apply-macete-with-minor-premises abs-free-characterization-of-real-limit)
direct-and-antecedent-inference-strategy
(beta-reduce-antecedent "with(gamma:rr,a:[nn,rr],
forall(gamma_1:rr,
forall(theta:rr,
lambda(x:rr,forsome(n:nn,x=a(n)))(theta)
implies
theta<=gamma_1)
implies
gamma<=gamma_1));")
(instantiate-universal-antecedent "with(gamma:rr,a:[nn,rr],
forall(gamma_1:rr,
forall(theta:rr,
forsome(n:nn,theta=a(n)) implies theta<=gamma_1)
implies
gamma<=gamma_1));" ("gamma-eps"))
(contrapose "with(eps,gamma,theta_$0:rr,not(theta_$0<=gamma-eps));")
(backchain "with(n_$0:nn,a:[nn,rr],theta_$0:rr,theta_$0=a(n_$0));")
(instantiate-universal-antecedent "with(a:[nn,rr],eps,gamma:rr,
forall(n:zz,
forsome(p:zz,
n<=p
and
(not(gamma-eps<=a(p)) or not(a(p)<=gamma+eps)))));" ("n_$0"))
(cut-with-single-formula "a(n_$0)<=a(p)")
simplify
(weaken (0 2 3 4))
(induction integer-inductor ("p"))
(instantiate-universal-antecedent "with(b:rr,a:[nn,rr],forall(n:nn,a(n)<=a(n+1) and a(n)<=b));" ("t"))
simplify
(instantiate-universal-antecedent "with(gamma:rr,a:[nn,rr],
forall(theta:rr,
forsome(n:nn,theta=a(n)) implies theta<=gamma));" ("a(p)"))
(instantiate-universal-antecedent "with(p:zz,a:[nn,rr],forall(n_$0:nn,not(a(p)=a(n_$0))));" ("p"))
(simplify-antecedent "with(p:zz,a:[nn,rr],not(a(p)=a(p)));")
(instantiate-universal-antecedent "with(b:rr,a:[nn,rr],forall(n:nn,a(n)<=a(n+1) and a(n)<=b));" ("p"))
(apply-macete-with-minor-premises nn-defining-axiom_h-o-real-arithmetic)
simplify
(cut-with-single-formula "0<=n_$0")
simplify
(apply-macete-with-minor-premises nn-in-quasi-sort_h-o-real-arithmetic)
(apply-macete-with-minor-premises nn-defining-axiom_h-o-real-arithmetic)
simplify
(cut-with-single-formula "0<=n_$0")
simplify
(apply-macete-with-minor-premises nn-in-quasi-sort_h-o-real-arithmetic)
(simplify-antecedent "with(eps,gamma:rr,p:zz,a:[nn,rr],not(a(p)<=gamma+eps));")
(cut-with-single-formula "a(n_$0)<=a(p)")
(weaken (0 2 3 4))
(simplify-antecedent "with(eps,gamma:rr,gamma<=gamma-eps);")
)))
(def-constant bounded%non%increasing%seq
"lambda(a:[nn,rr], forsome(b:rr, forall(n:nn, a(n+1)<=a(n) and b<=a(n))))"
(theory h-o-real-arithmetic))
(def-theorem bounded%nonincreasing%seq-convergent
"forall(a:[nn,rr], bounded%non%increasing%seq(a)
implies
forall(n:nn, lim%rr(a)<=a(n)))"
(theory h-o-real-arithmetic)
(proof
(
(unfold-single-defined-constant (0) bounded%non%increasing%seq)
direct-and-antecedent-inference-strategy
(cut-with-single-formula "lambda(n:zz,[-1]*a(n))(n)<=lim%rr(lambda(n:zz,[-1]*a(n))) ")
(cut-with-single-formula "#(lim%rr(lambda(n:zz,[-1]*a(n))))")
(incorporate-antecedent "with(n:nn,a:[nn,rr],
lambda(n:zz,[-1]*a(n))(n)<=lim%rr(lambda(n:zz,[-1]*a(n))));")
(apply-macete-with-minor-premises homogeneity-of-real-limit)
simplify
(incorporate-antecedent "with(a:[nn,rr],#(lim%rr(lambda(n:zz,[-1]*a(n)))));")
(apply-macete-with-minor-premises lim%rr-negative)
simplify
(apply-macete-with-minor-premises bounded%non%decreasing%seq-convergent)
(unfold-single-defined-constant (0) bounded%non%decreasing%seq)
beta-reduce-with-minor-premises
(instantiate-existential ("-b"))
beta-reduce-repeatedly
simplify
(instantiate-universal-antecedent "with(b:rr,a:[nn,rr],forall(n:nn,a(n+1)<=a(n) and b<=a(n)));" ("n_$0"))
simplify
beta-reduce-repeatedly
simplify
(weaken (0))
sort-definedness
direct-and-antecedent-inference-strategy
(case-split ("#(xx_0,zz)"))
simplify
)))
(def-theorem additivity-of-real-limit
"forall(a,b:[zz,rr], #(lim%rr(a)) and #(lim%rr(b)) implies
lim%rr(lambda(n:zz,a(n)+b(n)))=lim%rr(a)+lim%rr(b))"
(theory h-o-real-arithmetic)
(proof
(
direct-and-antecedent-inference-strategy
(cut-with-single-formula "forsome(s,t:rr, lim%rr(a)=s and lim%rr(b)=t)")
(antecedent-inference "with(b,a:[zz,rr],
forsome(s,t:rr,lim%rr(a)=s and lim%rr(b)=t));")
(backchain "with(t:rr,b:[zz,rr],s:rr,a:[zz,rr],
lim%rr(a)=s and lim%rr(b)=t);")
(backchain "with(t:rr,b:[zz,rr],s:rr,a:[zz,rr],
lim%rr(a)=s and lim%rr(b)=t);")
(apply-macete-with-minor-premises abs-free-characterization-of-real-limit)
direct-and-antecedent-inference-strategy
beta-reduce-repeatedly
(incorporate-antecedent "with(t:rr,b:[zz,rr],s:rr,a:[zz,rr],
lim%rr(a)=s and lim%rr(b)=t);")
(apply-macete-with-minor-premises abs-free-characterization-of-real-limit)
direct-and-antecedent-inference-strategy
(instantiate-universal-antecedent "with(p:prop, forall(eps:rr, 0<eps implies p))" ("eps/2"))
(simplify-antecedent "with(eps:rr,not(0<eps/2));")
(instantiate-universal-antecedent "with(p:prop, forall(eps:rr, 0<eps implies p))" ("eps/2"))
(simplify-antecedent "with(eps:rr,not(0<eps/2));")
(cut-with-single-formula "forsome(s:zz, n_$1<=s and n_$0<=s)")
(antecedent-inference "with(n_$0,n_$1:zz,forsome(s:zz,n_$1<=s and n_$0<=s));")
(instantiate-existential ("s_$0"))
(instantiate-universal-antecedent "with(a:[zz,rr],eps,s:rr,n_$1:zz,
forall(p_$0:zz,
n_$1<=p_$0 implies
s-eps/2<=a(p_$0) and a(p_$0)<=s+eps/2));" ("p"))
(simplify-antecedent "with(p,n_$1:zz,not(n_$1<=p));")
(instantiate-universal-antecedent "with(b:[zz,rr],eps,t:rr,n_$0:zz,
forall(p_$0:zz,
n_$0<=p_$0 implies
t-eps/2<=b(p_$0) and b(p_$0)<=t+eps/2));" ("p"))
(simplify-antecedent "with(p,n_$0:zz,not(n_$0<=p));")
simplify
(instantiate-universal-antecedent "with(a:[zz,rr],eps,s:rr,n_$1:zz,
forall(p_$0:zz,
n_$1<=p_$0 implies
s-eps/2<=a(p_$0) and a(p_$0)<=s+eps/2));" ("p"))
(simplify-antecedent "with(p,n_$1:zz,not(n_$1<=p));")
(instantiate-universal-antecedent "with(b:[zz,rr],eps,t:rr,n_$0:zz,
forall(p_$0:zz,
n_$0<=p_$0 implies
t-eps/2<=b(p_$0) and b(p_$0)<=t+eps/2));" ("p"))
(simplify-antecedent "with(p,n_$0:zz,not(n_$0<=p));")
simplify
(instantiate-existential ("max(n_$1,n_$0)"))
simplify
simplify
(instantiate-existential ("lim%rr(a)" "lim%rr(b)"))
)))
(def-theorem real-convergent-bounded
"forall(a:[zz,rr], #(lim%rr(a))
implies
forsome(u:rr, k:zz, forall(n:zz, k<=n implies abs(a(n))<=u)))"
(theory h-o-real-arithmetic)
(proof
(
(apply-macete-with-minor-premises existence-of-real-limit)
direct-and-antecedent-inference-strategy
(instantiate-universal-antecedent "with(p:prop,
forall(eps:rr, 0<eps implies p))" ("1"))
(simplify-antecedent "not(0<1);")
(instantiate-existential ("abs(x)+1" "n"))
(cut-with-single-formula "abs(a(n_$0))-abs(x)<=abs(x-a(n_$0))")
(instantiate-universal-antecedent "with(q:prop,forall(p:zz,q))" ("n_$0"))
simplify
(cut-with-single-formula "forall(a,b:rr, abs(a)-abs(b)<=abs(b-a))")
(backchain "forall(a,b:rr,abs(a)-abs(b)<=abs(b-a));")
(instantiate-universal-antecedent "with(a:[zz,rr],x:rr,n:zz,
forall(p:zz,n<=p implies abs(x-a(p))<=1));" ("n_$0"))
(weaken (0 1))
unfold-defined-constants
(prove-by-logic-and-simplification 3)
)))
(def-theorem limit-of-constants
"forall(s:rr, lim%rr(lambda(k:zz, s))=s)"
(theory h-o-real-arithmetic)
(proof
(
(apply-macete-with-minor-premises abs-free-characterization-of-real-limit)
direct-and-antecedent-inference-strategy
(instantiate-existential ("0"))
beta-reduce-repeatedly
simplify
simplify
)))
(def-theorem real-limit-square
"forall(a:[zz,rr], #(lim%rr(a)) implies
lim%rr(lambda(n:zz,a(n)^2))=lim%rr(a)^2)"
(theory h-o-real-arithmetic)
(proof
(
direct-and-antecedent-inference-strategy
(cut-with-single-formula "forsome(s:rr,lim%rr(a)=s)")
(move-to-sibling 1)
(instantiate-existential ("lim%rr(a)"))
(antecedent-inference "with(a:[zz,rr],forsome(s:rr,lim%rr(a)=s));")
(backchain-repeatedly ("with(s:rr,a:[zz,rr],lim%rr(a)=s);"))
(incorporate-antecedent "with(s:rr,a:[zz,rr],lim%rr(a)=s);")
(apply-macete-with-minor-premises characterization-of-real-limit)
direct-and-antecedent-inference-strategy
(cut-with-single-formula "forsome(m:rr,p:zz, forall(k:zz,p<=k implies abs(s+a(k))<=m))")
(move-to-sibling 1)
(force-substitution "s+a(k)" "lambda(k:zz,s+a(k))(k)" (0))
(move-to-sibling 1)
beta-reduce-repeatedly
(apply-macete-with-minor-premises real-convergent-bounded)
(force-substitution "s" "lambda(k:zz,s)(k)" (0))
(apply-macete-with-minor-premises additivity-of-real-limit)
simplify
(apply-macete-with-minor-premises limit-of-constants)
simplify
beta-reduce-repeatedly
(antecedent-inference "with(a:[zz,rr],s:rr,
forsome(m:rr,p:zz,
forall(k:zz,p<=k implies abs(s+a(k))<=m)));")
(instantiate-universal-antecedent "with(a:[zz,rr],s:rr,
forall(eps:rr,
0<eps
implies
forsome(n:zz,
forall(p:zz,n<=p implies abs(s-a(p))<=eps))));" ("eps/max(1,m)"))
(contrapose "with(m,eps:rr,not(0<eps/max(1,m)));")
(apply-macete-with-minor-premises fractional-expression-manipulation)
simplify
(instantiate-existential ("max(n_$0,p)"))
(force-substitution "s^2-a(p_$0)^2" "(s-a(p_$0))*(s+a(p_$0))" (0))
(move-to-sibling 1)
(cut-with-single-formula "#(a(p_$0))")
simplify
(instantiate-universal-antecedent "with(m:rr,a:[zz,rr],s:rr,p:zz,
forall(k:zz,p<=k implies abs(s+a(k))<=m));" ("p_$0"))
(cut-with-single-formula "p<=max(n_$0,p)")
simplify
(apply-macete-with-minor-premises maximum-2nd-arg)
(apply-macete-with-minor-premises transitivity-of-<=)
(instantiate-existential ("(eps/max(1,m))*m"))
(apply-macete-with-minor-premises absolute-value-product)
(apply-macete-with-minor-premises monotone-product-lemma)
direct-and-antecedent-inference-strategy
(apply-macete-with-minor-premises non-negativity-of-absolute-value)
(backchain "with(m,eps:rr,a:[zz,rr],s:rr,n_$0:zz,
forall(p_$0:zz,
n_$0<=p_$0 implies abs(s-a(p_$0))<=eps/max(1,m)));")
(cut-with-single-formula "n_$0<=max(n_$0,p)")
simplify
(apply-macete-with-minor-premises maximum-1st-arg)
(apply-macete-with-minor-premises non-negativity-of-absolute-value)
(backchain "with(m:rr,a:[zz,rr],s:rr,p:zz,
forall(k:zz,p<=k implies abs(s+a(k))<=m));")
(cut-with-single-formula "p<=max(n_$0,p)")
simplify
(apply-macete-with-minor-premises maximum-2nd-arg)
(apply-macete-with-minor-premises fractional-expression-manipulation)
simplify
)))
(def-theorem product-in-terms-of-squares-lemma
Remark: This entry is multiply defined. See: [1] [2]
"forall(a,b:rr, a*b=1/2*((a+b)^2+[-1]*(a^2+b^2)))"
(proof
(
simplify
))
(theory h-o-real-arithmetic))
(def-schematic-macete abstraction-builder-for-sums-of-sequences
"with(a,b:rr,
lim%rr(lambda(x:zz,a+b))=lim%rr(lambda(x:zz,lambda(x:zz,a)(x)+lambda(x:zz,b)(x))))"
(theory h-o-real-arithmetic)
null)
(def-schematic-macete abstraction-builder-for-products-of-sequences
"with(a,b:rr,
lim%rr(lambda(x:zz,a*b))=lim%rr(lambda(x:zz,lambda(x:zz,a)(x)*lambda(x:zz,b)(x))))"
(theory h-o-real-arithmetic)
null)
(def-schematic-macete abstraction-builder-for-squares-of-sequences
"with(a:rr, lim%rr(lambda(x:zz,a^2))=lim%rr(lambda(x:zz,lambda(x:zz,a)(x)^2)))"
(theory h-o-real-arithmetic)
null)
(def-compound-macete abstraction-for-sequences
(series
(sound
abstraction-builder-for-sums-of-sequences
beta-reduce-repeatedly
beta-reduce-repeatedly)
(sound
abstraction-builder-for-products-of-sequences
beta-reduce-repeatedly
beta-reduce-repeatedly)
(sound
abstraction-builder-for-squares-of-sequences
beta-reduce-repeatedly
beta-reduce-repeatedly)))
(def-theorem homogeneity-of-real-limit-corollary
"forall(a:[zz,rr], s,b:rr, b*lim%rr(a)=s implies
lim%rr(lambda(n:zz,b*a(n)))=s)"
(theory h-o-real-arithmetic)
(proof
(
(apply-macete-with-minor-premises homogeneity-of-real-limit)
)))
(def-theorem additivity-of-real-limit-corollary
"forall(a,b:[zz,rr], s:rr, lim%rr(a)+lim%rr(b)=s
implies
lim%rr(lambda(n:zz,a(n)+b(n)))=s)"
(theory h-o-real-arithmetic)
(proof
(
(apply-macete-with-minor-premises additivity-of-real-limit)
)))
(def-theorem real-limit-square-corollary
"forall(a:[zz,rr], s:rr, lim%rr(a)^2=s
implies
lim%rr(lambda(n:zz,a(n)^2))=s)"
(theory h-o-real-arithmetic)
(proof
(
(apply-macete-with-minor-premises real-limit-square)
)))
(def-theorem equal-arguments-implies-equal
"forall(op:[rr,rr,rr],a,b,c,d:rr, a=c and b=d and #(op(a,b)) implies op(a,b)=op(c,d))"
(theory h-o-real-arithmetic)
(proof
(
simplify
)))
(def-theorem real-limit-product
"forall(a,b:[zz,rr], #(lim%rr(a)) and #(lim%rr(b))implies
lim%rr(lambda(n:zz,a(n)*b(n)))=lim%rr(a)*lim%rr(b))"
(theory h-o-real-arithmetic)
(proof
(
direct-and-antecedent-inference-strategy
(apply-macete-with-minor-premises product-in-terms-of-squares-lemma)
(force-substitution "((a(n)+b(n))^2+[-1]*(a(n)^2+b(n)^2))" "lambda(n:zz,((a(n)+b(n))^2+[-1]*(a(n)^2+b(n)^2)))(n)" (0))
(move-to-sibling 1)
beta-reduce-repeatedly
(apply-macete homogeneity-of-real-limit-corollary)
(apply-macete-with-minor-premises equal-arguments-implies-equal)
direct-and-antecedent-inference-strategy
simplify
(apply-macete-with-minor-premises abstraction-for-sequences)
(apply-macete additivity-of-real-limit-corollary)
(apply-macete-with-minor-premises equal-arguments-implies-equal)
direct-and-antecedent-inference-strategy
(apply-macete-with-minor-premises abstraction-for-sequences)
(apply-macete real-limit-square-corollary)
(apply-macete-with-minor-premises abstraction-for-sequences)
(apply-macete-with-minor-premises equal-arguments-implies-equal)
direct-and-antecedent-inference-strategy
beta-reduce-repeatedly
(weaken (0))
(apply-macete-with-minor-premises additivity-of-real-limit-corollary)
simplify
definedness
(force-substitution "(a(n)^2+b(n)^2)" "lambda(n:zz,(a(n)^2+b(n)^2))(n)" (0))
(apply-macete homogeneity-of-real-limit-corollary)
(apply-macete-with-minor-premises equal-arguments-implies-equal)
direct-and-antecedent-inference-strategy
(weaken (2 1 0))
(apply-macete-with-minor-premises abstraction-for-sequences)
(apply-macete additivity-of-real-limit-corollary)
(apply-macete equal-arguments-implies-equal)
direct-and-antecedent-inference-strategy
(apply-macete real-limit-square-corollary)
simplify
(weaken (0))
(apply-macete real-limit-square-corollary)
simplify
definedness
definedness
beta-reduce-repeatedly
definedness
definedness
)))