(def-theorem () "<= = lambda(a,b:rr,a<=b)" (theory h-o-real-arithmetic) (proof ( extensionality simplify )))
(def-theorem () "forall(a,c:rr,forsome(b:rr,b<=a and c<=b) implies c<=a)" (theory h-o-real-arithmetic) (proof ( direct-and-antecedent-inference-strategy simplify )))
(def-theorem () "forall(p:[rr,prop], nonvacuous_q{p} and forsome(alpha:rr, forall(theta:rr,p(theta) implies alpha<=theta)) implies forsome(gamma:rr, forall(theta:rr,p(theta) implies gamma<=theta) and forall(gamma_1:rr, forall(theta:rr,p(theta) implies gamma_1<=theta) implies gamma_1<=gamma)))" (theory h-o-real-arithmetic) lemma (proof ( (apply-macete-with-minor-premises tr%unfolded-completeness-from-below-condition) )))
(def-translation complete-partial-order-to-h-o-real-arithmetic-reverse force-under-quick-load (source complete-partial-order) (target h-o-real-arithmetic) (fixed-theories h-o-real-arithmetic) (constant-pairs (prec ">=") (prec%sup inf) (prec%majorizes minorizes) (rev%prec <=)) (sort-pairs (uu rr)) (theory-interpretation-check using-simplification))
(def-theorem inf-plus-epsilon "forall(s:sets[rr],eps:rr,0<eps implies not(inf(s)+eps minorizes s))" (theory h-o-real-arithmetic) (proof ( direct-and-antecedent-inference-strategy (cut-with-single-formula "#(inf(s)) or not(#(inf(s)))") (antecedent-inference "with(s:sets[rr],#(inf(s)) or not(#(inf(s))));") (cut-with-single-formula "not(inf(s)>=inf(s)+eps)") (contrapose "with(eps:rr,s:sets[rr],not(inf(s)>=inf(s)+eps));") (apply-macete-with-minor-premises tr%lub-property-of-prec%sup) direct-and-antecedent-inference-strategy simplify simplify simplify)))
(def-theorem inf-plus-epsilon-corollary "forall(s:sets[rr],eps:rr, 0<eps and #(inf(s)) implies forsome(x:rr, x in s and x < inf(s)+eps))" (proof ( direct-and-antecedent-inference-strategy (cut-with-single-formula "not(inf(s)+eps minorizes s)") (contrapose "with(eps:rr,s:sets[rr],not(inf(s)+eps minorizes s));") (unfold-single-defined-constant (0) minorizes) direct-and-antecedent-inference-strategy (instantiate-universal-antecedent "with(p,q:prop,forall(x:rr,p or q))" ("x_$0")) simplify (apply-macete-with-minor-premises inf-plus-epsilon) ) ) (theory h-o-real-arithmetic))
(def-theorem inf-defined-implies-non-empty "forall(s:sets[rr],#(inf(s)) implies forsome(x:rr, x in s))" (theory h-o-real-arithmetic) (proof ( direct-and-antecedent-inference-strategy (contrapose "with(s:sets[rr],#(inf(s)));") (cut-with-single-formula "#(inf(s)) implies inf(s)>=inf(s)+1") (antecedent-inference "with(p,q:prop, p implies q)") (simplify-antecedent "with(s:sets[rr],inf(s)>=inf(s)+1);") direct-and-antecedent-inference-strategy (apply-macete-with-minor-premises tr%lub-property-of-prec%sup) direct-and-antecedent-inference-strategy (unfold-single-defined-constant (0) minorizes) direct-and-antecedent-inference-strategy )))
(def-theorem discrete-sets-contain-inf "forall(s:sets[rr], discrete%set(s) and #(inf(s)) implies inf(s) in s)" (theory h-o-real-arithmetic) (proof ( (unfold-single-defined-constant (0) discrete%set) direct-and-antecedent-inference-strategy (cut-with-single-formula "forsome(x:rr, x in s and x<inf(s)+a)") (antecedent-inference "with(a:rr,s:sets[rr],forsome(x:rr,x in s and x<inf(s)+a));") (cut-with-single-formula "x=inf(s) or inf(s)<x") (antecedent-inference "with(s:sets[rr],x:rr,x=inf(s) or inf(s)<x);") simplify (cut-with-single-formula "with(x:rr,s:sets[rr],forsome(y:rr,y in s and y<x));") (antecedent-inference "with(x:rr,s:sets[rr],forsome(y:rr,y in s and y<x));") (instantiate-universal-antecedent "with(a:rr,forall(x,y:rr,x<y implies a<=y-x));" ("y" "x")) (cut-with-single-formula "y>=inf(s)") (simplify-antecedent "with(s:sets[rr],y:rr,y>=inf(s));") (apply-macete-with-minor-premises tr%minorizes-property-of-prec%sup) direct-and-antecedent-inference-strategy (instantiate-existential ("y")) simplify (force-substitution "x" "inf(s)+(x-inf(s))" (0)) (apply-macete-with-minor-premises inf-plus-epsilon-corollary) direct-and-antecedent-inference-strategy simplify simplify (cut-with-single-formula "inf(s)<=x") simplify (force-substitution "inf(s)<=x" "x>=inf(s)" (0)) (apply-macete-with-minor-premises tr%minorizes-property-of-prec%sup) direct-and-antecedent-inference-strategy (instantiate-existential ("x")) simplify (unfold-single-defined-constant (0) >=) (apply-macete-with-minor-premises inf-plus-epsilon-corollary) direct-and-antecedent-inference-strategy )))
(def-constant next "lambda(s:sets[rr],a:rr, inf(indic{x:rr,x in s and a<x}))" (theory h-o-real-arithmetic))
(def-theorem next-for-discrete-sets "forall(s:sets[rr], x:rr, discrete%set(s) and #(next(s,x)) implies next(s,x) in s)" (proof ( (unfold-single-defined-constant (0 1) next) direct-and-antecedent-inference-strategy (cut-with-single-formula "forall(a,b:sets[rr],inf(a) in a and a subseteq b implies inf(a) in b)") (backchain "forall(a,b:sets[rr],inf(a) in a and a subseteq b implies inf(a) in b)") direct-and-antecedent-inference-strategy (apply-macete-with-minor-premises discrete-sets-contain-inf) direct-and-antecedent-inference-strategy (incorporate-antecedent "with(s:sets[rr],discrete%set(s));") unfold-defined-constants simplify-insistently simplify )) (theory h-o-real-arithmetic))
(def-theorem next-definedness-condition "forall(s:sets[rr], x:rr, #(next(s,x)) iff forsome(y:rr, y in s and x<y))" (proof ( (unfold-single-defined-constant (0) next) direct-and-antecedent-inference-strategy (cut-with-single-formula "forsome(y:rr, y in indic{x_$1:rr, x_$1 in s and x<x_$1})") (antecedent-inference "with(x:rr,s:sets[rr], nonempty_indic_q{indic{x_$1:rr, x_$1 in s and x<x_$1}});") (instantiate-existential ("y")) (contrapose "with(y,x:rr,s:sets[rr], y in indic{x_$1:rr, x_$1 in s and x<x_$1});") simplify-insistently (contrapose "with(y,x:rr,s:sets[rr], y in indic{x_$1:rr, x_$1 in s and x<x_$1});") simplify-insistently (apply-macete-with-minor-premises inf-defined-implies-non-empty) (apply-macete-with-minor-premises tr%prec%sup-defined) direct-and-antecedent-inference-strategy simplify-insistently auto-instantiate-existential (instantiate-existential ("x")) (unfold-single-defined-constant (0) minorizes) simplify-insistently )) (theory h-o-real-arithmetic))