(def-language language-for-interval-theory
(embedded-languages h-o-real-arithmetic)
(sorts (ii rr)))
(def-theory fixed-interval-theory
Remark: This entry is multiply defined. See: [1] [2]
(component-theories h-o-real-arithmetic)
(language language-for-interval-theory)
(axioms
(interval-characterization
"forall(a,b:ii,x:rr, a<=x and x<=b implies #(x,ii))")
(non-degeneracy
"forsome(x,y:ii, x<y)")))
(def-theorem interval-bounding-lemma
Remark: This entry is multiply defined. See: [1] [2]
"forall(x,y:rr, c,d :ii, not(#(x,ii)) and not(#(y,ii)) and x<=c and c<=y implies
x<d and d<y)"
(proof
(
direct-and-antecedent-inference-strategy
(contrapose "with(x:rr,not(#(x,ii)));")
(apply-macete-with-minor-premises interval-characterization)
(instantiate-existential ("c" "d"))
simplify
(contrapose "with(y:rr,not(#(y,ii)));")
(apply-macete-with-minor-premises interval-characterization)
(instantiate-existential ("d" "c"))
simplify
))
(theory fixed-interval-theory))
(def-constant dseq
"lambda(delta:rr, lambda(x:rr, delta*(floor(x/delta))))"
(theory h-o-real-arithmetic))
(def-theorem dseq-definedness
"forall(delta,x:rr, 0<delta implies #(dseq(delta)(x)))"
(theory fixed-interval-theory)
(proof
(
(unfold-single-defined-constant (0) dseq)
direct-and-antecedent-inference-strategy
(instantiate-theorem floor-definedness ("x/delta"))
simplify
)))
(def-theorem dseq-distance-bound
"forall(x,delta:rr, 0<delta implies dseq(delta)(x)<=x and x<dseq(delta)(x)+delta)"
(theory fixed-interval-theory)
(proof
(
direct-inference
direct-inference
unfold-defined-constants
(cut-with-single-formula "forsome(n:zz, floor(x/delta)=n)")
(antecedent-inference "with(p:prop,forsome(n:zz,p));")
(backchain-repeatedly ("with(n,z:zz,z=n);"))
(incorporate-antecedent "with(n,z:zz,z=n);")
(apply-macete-with-minor-premises floor-characterization)
(apply-macete-with-minor-premises fractional-expression-manipulation)
simplify
(cut-with-single-formula "total_q{floor,[rr,zz]}")
(instantiate-existential ("floor(x/delta)"))
simplify
(apply-macete-with-minor-premises floor-definedness)
)))
(def-constant delta%width
"lambda(delta:rr, 0<delta and forsome(x,y:ii, delta<=y-x))"
(theory fixed-interval-theory))
(def-theorem dseq-quasi-invariance
"forall(delta:rr,
delta%width(delta)
implies
forall(x:ii,
#(dseq(delta)(x),ii) or #(dseq(delta)(x)+delta,ii)))"
(proof
(
(unfold-single-defined-constant (0) delta%width)
direct-and-antecedent-inference-strategy
(contrapose "with(x_$0,y:ii,delta:rr,delta<=y-x_$0);")
(cut-with-single-formula "(dseq(delta)(x)<x_$0 and x_$0<dseq(delta)(x)+delta) and
(dseq(delta)(x)<y and y<dseq(delta)(x)+delta)")
simplify
(apply-macete-with-minor-premises interval-bounding-lemma)
(cut-with-single-formula "dseq(delta)(x)<=x and x<dseq(delta)(x)+delta")
direct-inference
(instantiate-existential ("x"))
simplify
(apply-macete-with-minor-premises dseq-distance-bound)
(apply-macete-with-minor-premises dseq-definedness)
(apply-macete-with-minor-premises dseq-definedness)
))
(theory fixed-interval-theory))
(def-theorem dseq-distance-bound-corollary
"forall(delta:rr,
delta%width(delta)
implies
forall(x:ii,#(if(#(dseq(delta)(x),ii), dseq(delta)(x),dseq(delta)(x)+delta),ii)))"
(proof
(
direct-and-antecedent-inference-strategy
sort-definedness
direct-and-antecedent-inference-strategy
(cut-with-single-formula " #(dseq(delta)(x),ii) or #(dseq(delta)(x)+delta,ii)")
(antecedent-inference "with(p,q:prop, p or q)")
(apply-macete-with-minor-premises dseq-quasi-invariance)
))
(theory fixed-interval-theory))
(def-theorem ()
"forall(x,y,z:ii,abs(x+[-1]*z)<=abs(x+[-1]*y)+abs(y+[-1]*z))"
(theory fixed-interval-theory)
(proof
(
(force-substitution "x+[-1]*z" "(x+[-1]*y)+(y+[-1]*z)" (0))
(apply-macete-with-minor-premises triangle-inequality)
simplify
))
)
(def-theorem ()
"forall(x,y:ii,abs(x+[-1]*y)=abs([-1]*x+y))"
(theory fixed-interval-theory)
(proof
(
(force-substitution "([-1]*x+y)" "[-1]*(x+[-1]*y)" (0))
(apply-macete-with-minor-premises absolute-value-product)
(apply-macete absolute-value-non-positive)
simplify
simplify
)))
(def-theorem ()
"forall(x,y:ii,x=y iff abs(x+[-1]*y)=0)"
(theory fixed-interval-theory)
(proof
(
(apply-macete-with-minor-premises absolute-value-zero)
simplify
)))
(def-theory mappings-from-an-interval
(component-theories fixed-interval-theory metric-spaces))
(def-theorem ()
"forall(x,y,z:ii,abs([-1]*z+x)<=abs([-1]*z+y)+abs(x+[-1]*y))"
(theory fixed-interval-theory)
(proof
(
(force-substitution "[-1]*z+x" "([-1]*z+y)+(x+[-1]*y)" (0))
(apply-macete-with-minor-premises triangle-inequality)
simplify
)))
(def-theory-ensemble-instances metric-spaces
force-under-quick-load
(target-theories fixed-interval-theory metric-spaces)
(permutations (0) (0 1))
(theory-interpretation-check using-simplification)
(sorts (pp ii pp))
(constants (dist "lambda(x,y:ii, abs(x-y))" dist))
(special-renamings
(ball ii%ball)
(open%ball ii%open%ball)
(lim ii%lim)
(closure ii%closure)
(uniformly%continuous uniformly%continuous%ii%pp)
(lipschitz%bound ii%lipschitz%bound)
(lipschitz%bound%on ii%lipschitz%bound%on)))
(def-theory-ensemble-overloadings metric-spaces (1 2))
(def-constant step%fn
"lambda(f:[ii,pp],
forsome(delta:rr,
0<delta
and
forall(x,y:ii,
dseq(delta)(x)=dseq(delta)(y) implies f(x)=f(y))))"
(theory mappings-from-an-interval))
(def-constant delta%step%approximant
"lambda(delta:rr,f:[ii,pp],
lambda(x:ii,
f(if(#(dseq(delta)(x),ii), dseq(delta)(x),dseq(delta)(x)+delta))))"
(theory mappings-from-an-interval))
(def-theorem delta-step-is-a-step-fn
"forall(delta:rr,f:[ii,pp],
delta%width(delta) and total_q{f,[ii,pp]}
implies
step%fn(delta%step%approximant(delta,f)))"
(proof
(
unfold-defined-constants
direct-and-antecedent-inference-strategy
auto-instantiate-existential
(backchain-repeatedly ("with(a,b:rr,a=b)"))
(cut-with-single-formula "#(if(#(dseq(delta)(y_$1),ii),
dseq(delta)(y_$1), dseq(delta)(y_$1)+delta),ii)")
(apply-macete-with-minor-premises dseq-distance-bound-corollary)
(unfold-single-defined-constant-globally delta%width)
direct-and-antecedent-inference-strategy
auto-instantiate-existential
))
(theory mappings-from-an-interval))
(def-theorem step-functions-approximate
"forall(f:[ii,pp], eps:rr,
0<eps and uniformly%continuous(f) and total_q{f,[ii,pp]}
implies
forsome(g:[ii,pp],
step%fn(g) and forall(x:ii, dist(f(x),g(x))<=eps)))"
(theory mappings-from-an-interval)
(proof
(
(unfold-single-defined-constant (0) uniformly%continuous%ii%pp)
direct-and-antecedent-inference-strategy
(auto-instantiate-universal-antecedent "with(f:[ii,pp],
forall(eps:rr,
0<eps
implies
forsome(delta:rr,
0<delta
and
forall(x,y:ii,
#(f(x)) and #(f(y)) and abs(x-y)<=delta
implies
dist(f(x),f(y))<=eps))));")
(cut-with-single-formula "forsome(delta_1:rr, delta%width(delta_1) and delta_1<=delta)")
(antecedent-inference "with(p:prop,forsome(delta_1:rr,p));")
(instantiate-existential ("delta%step%approximant(delta_1,f)"))
(apply-macete-with-minor-premises delta-step-is-a-step-fn)
direct-and-antecedent-inference-strategy
(unfold-single-defined-constant (0) delta%step%approximant)
(backchain "with(p:prop,forall(x,y:ii,p));")
direct-and-antecedent-inference-strategy
(backchain "with(f:[ii,pp],total_q{f,[ii,pp]});")
(apply-macete-with-minor-premises commutative-law-for-addition)
(apply-macete-with-minor-premises dseq-distance-bound-corollary)
(unfold-single-defined-constant (0) abs)
(cut-with-single-formula
"dseq(delta_1)(x_$0)<=x_$0 and x_$0<dseq(delta_1)(x_$0)+delta_1")
(prove-by-logic-and-simplification 3)
(apply-macete-with-minor-premises dseq-distance-bound)
(incorporate-antecedent "with(p:prop,p and p);")
(unfold-single-defined-constant (0) delta%width)
direct-and-antecedent-inference-strategy
(apply-macete-with-minor-premises commutative-law-for-addition)
(apply-macete-with-minor-premises dseq-distance-bound-corollary)
(unfold-single-defined-constant-globally delta%step%approximant)
(unfold-single-defined-constant (0) delta%width)
(cut-with-single-formula "forsome(x,y:ii, x<y)")
(instantiate-existential ("min(y-x,delta)"))
(unfold-single-defined-constant (0) min)
(prove-by-logic-and-simplification 3)
(instantiate-existential ("x" "y"))
(apply-macete-with-minor-premises minimum-1st-arg)
(apply-macete-with-minor-premises minimum-2nd-arg)
(apply-macete-with-minor-premises non-degeneracy)
)))