(def-language language-for-interval-theory (embedded-languages h-o-real-arithmetic) (sorts (ii rr)))
(def-theory fixed-interval-theory Remark: This entry is multiply defined. See: [1] [2] (component-theories h-o-real-arithmetic) (language language-for-interval-theory) (axioms (interval-characterization "forall(a,b:ii,x:rr, a<=x and x<=b implies #(x,ii))") (non-degeneracy "forsome(x,y:ii, x<y)")))
(def-theorem interval-bounding-lemma Remark: This entry is multiply defined. See: [1] [2] "forall(x,y:rr, c,d :ii, not(#(x,ii)) and not(#(y,ii)) and x<=c and c<=y implies x<d and d<y)" (proof ( direct-and-antecedent-inference-strategy (contrapose "with(x:rr,not(#(x,ii)));") (apply-macete-with-minor-premises interval-characterization) (instantiate-existential ("c" "d")) simplify (contrapose "with(y:rr,not(#(y,ii)));") (apply-macete-with-minor-premises interval-characterization) (instantiate-existential ("d" "c")) simplify )) (theory fixed-interval-theory))
(def-constant dseq "lambda(delta:rr, lambda(x:rr, delta*(floor(x/delta))))" (theory h-o-real-arithmetic))
(def-theorem dseq-definedness "forall(delta,x:rr, 0<delta implies #(dseq(delta)(x)))" (theory fixed-interval-theory) (proof ( (unfold-single-defined-constant (0) dseq) direct-and-antecedent-inference-strategy (instantiate-theorem floor-definedness ("x/delta")) simplify )))
(def-theorem dseq-distance-bound "forall(x,delta:rr, 0<delta implies dseq(delta)(x)<=x and x<dseq(delta)(x)+delta)" (theory fixed-interval-theory) (proof ( direct-inference direct-inference unfold-defined-constants (cut-with-single-formula "forsome(n:zz, floor(x/delta)=n)") (antecedent-inference "with(p:prop,forsome(n:zz,p));") (backchain-repeatedly ("with(n,z:zz,z=n);")) (incorporate-antecedent "with(n,z:zz,z=n);") (apply-macete-with-minor-premises floor-characterization) (apply-macete-with-minor-premises fractional-expression-manipulation) simplify (cut-with-single-formula "total_q{floor,[rr,zz]}") (instantiate-existential ("floor(x/delta)")) simplify (apply-macete-with-minor-premises floor-definedness) )))
(def-constant delta%width "lambda(delta:rr, 0<delta and forsome(x,y:ii, delta<=y-x))" (theory fixed-interval-theory))
(def-theorem dseq-quasi-invariance "forall(delta:rr, delta%width(delta) implies forall(x:ii, #(dseq(delta)(x),ii) or #(dseq(delta)(x)+delta,ii)))" (proof ( (unfold-single-defined-constant (0) delta%width) direct-and-antecedent-inference-strategy (contrapose "with(x_$0,y:ii,delta:rr,delta<=y-x_$0);") (cut-with-single-formula "(dseq(delta)(x)<x_$0 and x_$0<dseq(delta)(x)+delta) and (dseq(delta)(x)<y and y<dseq(delta)(x)+delta)") simplify (apply-macete-with-minor-premises interval-bounding-lemma) (cut-with-single-formula "dseq(delta)(x)<=x and x<dseq(delta)(x)+delta") direct-inference (instantiate-existential ("x")) simplify (apply-macete-with-minor-premises dseq-distance-bound) (apply-macete-with-minor-premises dseq-definedness) (apply-macete-with-minor-premises dseq-definedness) )) (theory fixed-interval-theory))
(def-theorem dseq-distance-bound-corollary "forall(delta:rr, delta%width(delta) implies forall(x:ii,#(if(#(dseq(delta)(x),ii), dseq(delta)(x),dseq(delta)(x)+delta),ii)))" (proof ( direct-and-antecedent-inference-strategy sort-definedness direct-and-antecedent-inference-strategy (cut-with-single-formula " #(dseq(delta)(x),ii) or #(dseq(delta)(x)+delta,ii)") (antecedent-inference "with(p,q:prop, p or q)") (apply-macete-with-minor-premises dseq-quasi-invariance) )) (theory fixed-interval-theory))
(def-theorem () "forall(x,y,z:ii,abs(x+[-1]*z)<=abs(x+[-1]*y)+abs(y+[-1]*z))" (theory fixed-interval-theory) (proof ( (force-substitution "x+[-1]*z" "(x+[-1]*y)+(y+[-1]*z)" (0)) (apply-macete-with-minor-premises triangle-inequality) simplify )) )
(def-theorem () "forall(x,y:ii,abs(x+[-1]*y)=abs([-1]*x+y))" (theory fixed-interval-theory) (proof ( (force-substitution "([-1]*x+y)" "[-1]*(x+[-1]*y)" (0)) (apply-macete-with-minor-premises absolute-value-product) (apply-macete absolute-value-non-positive) simplify simplify )))
(def-theorem () "forall(x,y:ii,x=y iff abs(x+[-1]*y)=0)" (theory fixed-interval-theory) (proof ( (apply-macete-with-minor-premises absolute-value-zero) simplify )))
(def-theory mappings-from-an-interval (component-theories fixed-interval-theory metric-spaces))
(def-theorem () "forall(x,y,z:ii,abs([-1]*z+x)<=abs([-1]*z+y)+abs(x+[-1]*y))" (theory fixed-interval-theory) (proof ( (force-substitution "[-1]*z+x" "([-1]*z+y)+(x+[-1]*y)" (0)) (apply-macete-with-minor-premises triangle-inequality) simplify )))
(def-theory-ensemble-instances metric-spaces force-under-quick-load (target-theories fixed-interval-theory metric-spaces) (permutations (0) (0 1)) (theory-interpretation-check using-simplification) (sorts (pp ii pp)) (constants (dist "lambda(x,y:ii, abs(x-y))" dist)) (special-renamings (ball ii%ball) (open%ball ii%open%ball) (lim ii%lim) (closure ii%closure) (uniformly%continuous uniformly%continuous%ii%pp) (lipschitz%bound ii%lipschitz%bound) (lipschitz%bound%on ii%lipschitz%bound%on)))
(def-theory-ensemble-overloadings metric-spaces (1 2))
(def-constant step%fn "lambda(f:[ii,pp], forsome(delta:rr, 0<delta and forall(x,y:ii, dseq(delta)(x)=dseq(delta)(y) implies f(x)=f(y))))" (theory mappings-from-an-interval))
(def-constant delta%step%approximant "lambda(delta:rr,f:[ii,pp], lambda(x:ii, f(if(#(dseq(delta)(x),ii), dseq(delta)(x),dseq(delta)(x)+delta))))" (theory mappings-from-an-interval))
(def-theorem delta-step-is-a-step-fn "forall(delta:rr,f:[ii,pp], delta%width(delta) and total_q{f,[ii,pp]} implies step%fn(delta%step%approximant(delta,f)))" (proof ( unfold-defined-constants direct-and-antecedent-inference-strategy auto-instantiate-existential (backchain-repeatedly ("with(a,b:rr,a=b)")) (cut-with-single-formula "#(if(#(dseq(delta)(y_$1),ii), dseq(delta)(y_$1), dseq(delta)(y_$1)+delta),ii)") (apply-macete-with-minor-premises dseq-distance-bound-corollary) (unfold-single-defined-constant-globally delta%width) direct-and-antecedent-inference-strategy auto-instantiate-existential )) (theory mappings-from-an-interval))
(def-theorem step-functions-approximate "forall(f:[ii,pp], eps:rr, 0<eps and uniformly%continuous(f) and total_q{f,[ii,pp]} implies forsome(g:[ii,pp], step%fn(g) and forall(x:ii, dist(f(x),g(x))<=eps)))" (theory mappings-from-an-interval) (proof ( (unfold-single-defined-constant (0) uniformly%continuous%ii%pp) direct-and-antecedent-inference-strategy (auto-instantiate-universal-antecedent "with(f:[ii,pp], forall(eps:rr, 0<eps implies forsome(delta:rr, 0<delta and forall(x,y:ii, #(f(x)) and #(f(y)) and abs(x-y)<=delta implies dist(f(x),f(y))<=eps))));") (cut-with-single-formula "forsome(delta_1:rr, delta%width(delta_1) and delta_1<=delta)") (antecedent-inference "with(p:prop,forsome(delta_1:rr,p));") (instantiate-existential ("delta%step%approximant(delta_1,f)")) (apply-macete-with-minor-premises delta-step-is-a-step-fn) direct-and-antecedent-inference-strategy (unfold-single-defined-constant (0) delta%step%approximant) (backchain "with(p:prop,forall(x,y:ii,p));") direct-and-antecedent-inference-strategy (backchain "with(f:[ii,pp],total_q{f,[ii,pp]});") (apply-macete-with-minor-premises commutative-law-for-addition) (apply-macete-with-minor-premises dseq-distance-bound-corollary) (unfold-single-defined-constant (0) abs) (cut-with-single-formula "dseq(delta_1)(x_$0)<=x_$0 and x_$0<dseq(delta_1)(x_$0)+delta_1") (prove-by-logic-and-simplification 3) (apply-macete-with-minor-premises dseq-distance-bound) (incorporate-antecedent "with(p:prop,p and p);") (unfold-single-defined-constant (0) delta%width) direct-and-antecedent-inference-strategy (apply-macete-with-minor-premises commutative-law-for-addition) (apply-macete-with-minor-premises dseq-distance-bound-corollary) (unfold-single-defined-constant-globally delta%step%approximant) (unfold-single-defined-constant (0) delta%width) (cut-with-single-formula "forsome(x,y:ii, x<y)") (instantiate-existential ("min(y-x,delta)")) (unfold-single-defined-constant (0) min) (prove-by-logic-and-simplification 3) (instantiate-existential ("x" "y")) (apply-macete-with-minor-premises minimum-1st-arg) (apply-macete-with-minor-premises minimum-2nd-arg) (apply-macete-with-minor-premises non-degeneracy) )))