(def-language language-for-interval-in-cpo (embedded-languages complete-partial-order) (constants (bot uu) (top uu)))
(def-theory interval-in-cpo (component-theories complete-partial-order) (language language-for-interval-in-cpo) (axioms (non-triviality "bot prec top")))
(def-theorem () "lambda(x:uu,bot prec x and x prec top)(bot)" (theory interval-in-cpo) (proof ( beta-reduce-repeatedly (apply-macete-with-minor-premises prec-reflexivity) (apply-macete-with-minor-premises non-triviality) )))
(def-atomic-sort ii "lambda(x:uu, bot prec x and x prec top)" (theory interval-in-cpo) (witness "bot"))
(def-theorem () "forall(a,c:ii, forsome(b:ii,a prec b and b prec c) implies a prec c)" lemma (theory interval-in-cpo) (proof ( direct-and-antecedent-inference-strategy (apply-macete-with-minor-premises prec-transitivity) auto-instantiate-existential )))
(def-theorem interval-characterization Remark: This entry is multiply defined. See: [1] [2] [3] "forall(a,b:ii,x:uu, a prec x and x prec b implies #(x,ii))" (theory interval-in-cpo) (proof ( direct-and-antecedent-inference-strategy (apply-macete-with-minor-premises ii-defining-axiom_interval-in-cpo) direct-and-antecedent-inference-strategy (apply-macete-with-minor-premises prec-transitivity) (instantiate-existential ("a")) (cut-with-single-formula "#(a,ii)") (incorporate-antecedent "with(a:ii,#(a,ii));") (apply-macete-with-minor-premises ii-defining-axiom_interval-in-cpo) direct-and-antecedent-inference-strategy (apply-macete-with-minor-premises prec-transitivity) (instantiate-existential ("b")) (cut-with-single-formula "#(b,ii)") (incorporate-antecedent "with(b:ii,#(b,ii));") (apply-macete-with-minor-premises ii-defining-axiom_interval-in-cpo) direct-and-antecedent-inference-strategy )))
(def-theorem () "forall(p:[ii,prop], nonvacuous_q{p} and forsome(alpha:ii, forall(theta:ii,p(theta) implies theta prec alpha)) implies forsome(gamma:ii, forall(theta:ii,p(theta) implies theta prec gamma) and forall(gamma_1:ii, forall(theta:ii,p(theta) implies theta prec gamma_1) implies gamma prec gamma_1)))" lemma (theory interval-in-cpo) (proof ( direct-and-antecedent-inference-strategy (instantiate-theorem prec-completeness ("lambda(x:ii,p(x))")) (simplify-antecedent "with(p:prop,forall(x_0:uu,not(p)));") (instantiate-universal-antecedent "with(p:prop,forall(x_$1:ii,not(p)));" ("x_0")) (instantiate-universal-antecedent "with(p:prop,forall(alpha:uu,forsome(theta:uu,p)));" ("with(alpha:ii, alpha)")) (contrapose "with(p:prop,not(p));") (backchain "with(p:prop,forall(theta:ii,p implies p));") (cut-with-single-formula "#(gamma,ii)") (move-to-sibling 1) (apply-macete-with-minor-premises interval-characterization) (instantiate-existential ("alpha" "x_0")) (backchain "with(gamma:uu,p:prop, forall(theta:uu, lambda(x:ii,p)(theta) implies theta prec gamma));") beta-reduce-repeatedly (backchain "with(gamma:uu,p:prop, forall(gamma_1:uu, forall(theta:uu,p) implies gamma prec gamma_1));") direct-and-antecedent-inference-strategy (backchain "with(alpha:ii,p:[ii,prop], forall(theta:ii,p(theta) implies theta prec alpha));") (instantiate-existential ("gamma")) (backchain "with(gamma:uu,p:prop, forall(theta:uu, lambda(x:ii,p)(theta) implies theta prec gamma));") beta-reduce-repeatedly simplify )))
(def-translation relativize-to-interval force-under-quick-load (source complete-partial-order) (target interval-in-cpo) (fixed-theories h-o-real-arithmetic) (constant-pairs (prec "lambda(x,y:ii, x prec y)")) (sort-pairs (uu ii)) (theory-interpretation-check using-simplification))