(def-language language-for-interval-theory (embedded-languages h-o-real-arithmetic) (sorts (ii rr)))
(def-theory fixed-interval-theory Remark: This entry is multiply defined. See: [1] [2] (component-theories h-o-real-arithmetic) (language language-for-interval-theory) (axioms (interval-characterization "forall(a,b:ii,x:rr, a<=x and x<=b implies #(x,ii))") (non-degeneracy "forsome(x,y:ii, x<y)")))
(def-theorem interval-bounding-lemma Remark: This entry is multiply defined. See: [1] [2] "forall(x,y:rr, c,d :ii, not(#(x,ii)) and not(#(y,ii)) and x<=c and c<=y implies x<d and d<y)" (proof ( direct-and-antecedent-inference-strategy (contrapose "with(x:rr,not(#(x,ii)));") (apply-macete-with-minor-premises interval-characterization) (instantiate-existential ("c" "d")) simplify (contrapose "with(y:rr,not(#(y,ii)));") (apply-macete-with-minor-premises interval-characterization) (instantiate-existential ("d" "c")) simplify )) (theory fixed-interval-theory))
(def-theorem () "forall(a,c:ii,forsome(b:ii,a<=b and b<=c) implies a<=c)" (theory fixed-interval-theory) lemma (proof ( direct-and-antecedent-inference-strategy (apply-macete-with-minor-premises transitivity-of-<=) auto-instantiate-existential )))
(def-theorem () "forall(p:[ii,prop], nonvacuous_q{p} and forsome(alpha:ii, forall(theta:ii,p(theta) implies theta<=alpha)) implies forsome(gamma:ii, forall(theta:ii,p(theta) implies theta<=gamma) and forall(gamma_1:ii, forall(theta:ii,p(theta) implies theta<=gamma_1) implies gamma<=gamma_1)))" (theory fixed-interval-theory) lemma (proof ( direct-and-antecedent-inference-strategy (apply-macete-with-minor-premises completeness) (instantiate-theorem completeness ("p")) (instantiate-universal-antecedent "with(p:prop,forall(x_0:rr,not(p)));" ("x_0")) (instantiate-universal-antecedent "with(p:prop,forall(alpha:rr,forsome(theta:rr,p)));" ("alpha")) (contrapose "with(p:prop,not(p));") simplify (instantiate-existential ("gamma")) simplify simplify (apply-macete-with-minor-premises interval-characterization) (instantiate-universal-antecedent "with(gamma:rr,p:[ii,prop], forall(theta:rr,p(theta) implies theta<=gamma));" ("x_0")) (instantiate-universal-antecedent "with(gamma:rr,p:prop, forall(gamma_1:rr, forall(theta:rr,p) implies gamma<=gamma_1));" ("alpha")) (simplify-antecedent "with(p:prop,not(p));") (instantiate-existential ("alpha" "x_0")) )))
(def-translation cpo-to-fixed-interval-theory force-under-quick-load (source complete-partial-order) (target fixed-interval-theory) (fixed-theories h-o-real-arithmetic) (constant-pairs (prec "lambda(x,y:ii,x<=y)") (rev%prec "lambda(a,b:ii,b<=a)")) (sort-pairs (uu ii)) (theory-interpretation-check using-simplification))