(def-constant deriv "lambda(f:[ii,uu],x:ii, rlim(lambda(z:ii,(z-x)^[-1]*(f(z)-f(x))),x))" (theory mappings-from-an-interval-to-a-normed-space))
(def-theorem characterization-of-derivative "forall(x:ii,f:[ii,uu],v:uu, deriv(f,x)=v iff forall(eps:rr, 0<eps implies forsome(z_0:ii, x<z_0 and forall(z:ii, x<z and z<=z_0 implies norm((z-x)^[-1]*(f(z)-f(x))-v)<=eps))))" (theory mappings-from-an-interval-to-a-normed-space) (usages transportable-macete) (proof ( (unfold-single-defined-constant (0) deriv) (apply-macete-with-minor-premises iota-free-characterization-of-rlim) beta-reduce-repeatedly )))
(def-theorem existence-of-derivative "forall(x:ii,f:[ii,uu], #(deriv(f,x)) iff forsome(v:uu, forall(eps:rr, 0<eps implies forsome(z_0:ii, x<z_0 and forall(z:ii, x<z and z<=z_0 implies norm((z-x)^[-1]*(f(z)-f(x))-v)<=eps)))))" (theory mappings-from-an-interval-to-a-normed-space) (usages transportable-macete) (proof ( direct-and-antecedent-inference-strategy (cut-with-single-formula "deriv(f,x)=deriv(f,x)") (incorporate-antecedent "deriv(f,x)=deriv(f,x)") (apply-macete-with-minor-premises characterization-of-derivative) direct-inference (instantiate-existential ("deriv(f,x)")) (cut-with-single-formula "deriv(f,x)=v") (apply-macete-with-minor-premises characterization-of-derivative) )))
(def-theorem derivative-at-point-bound-lemma "forall(x:ii,f:[ii,uu],m:rr, norm(deriv(f,x))<=m implies forall(m_0:rr,z_0:ii, m<m_0 and x<z_0 implies forsome(z:ii, x<z and z<=z_0 and norm(f(z)-f(x))<=m_0*(z-x))))" (theory mappings-from-an-interval-to-a-normed-space) (proof ( direct-and-antecedent-inference-strategy (cut-with-single-formula "deriv(f,x)=deriv(f,x)") (incorporate-antecedent "deriv(f,x)=deriv(f,x)") (apply-macete-with-minor-premises characterization-of-derivative) (force-substitution "(z-x)^[-1]*(f(z)-f(x))-deriv(f,x)" "1/(z-x)*((f(z)-f(x))-(z-x)*deriv(f,x))" (0)) (apply-macete-with-minor-premises norm-scalar-multiplication) (apply-macete-with-minor-premises absolute-value-quotient) (force-substitution "abs(1)/abs(z-x)*norm(f(z)-f(x)-(z-x)*deriv(f,x))<=eps" "norm(f(z)-f(x)-(z-x)*deriv(f,x))<=eps*(z-x)" (0)) direct-and-antecedent-inference-strategy (instantiate-universal-antecedent "with(p:prop, forall(eps:rr, 0<eps implies p))" ("m_0-m")) simplify (cut-with-single-formula "forsome(w:ii,x<w and w<=z_$0 and w<=z_0)") (antecedent-inference "with(z_0,z_$0,x:ii,forsome(w:ii,x<w and w<=z_$0 and w<=z_0));") (instantiate-existential ("w")) (instantiate-universal-antecedent "with(m,m_0:rr,f:[ii,uu],z_$0,x:ii, forall(z:ii, x<z and z<=z_$0 implies norm(f(z)-f(x)-(z-x)*deriv(f,x))<=(m_0-m)*(z-x)));" ("w")) (cut-with-single-formula "norm(f(w)-f(x))-norm((w-x)*deriv(f,x))<=norm(f(w)-f(x)-(w-x)*deriv(f,x))") (cut-with-single-formula "norm((w-x)*deriv(f,x))<=m*(w-x)") simplify (apply-macete-with-minor-premises norm-scalar-multiplication) (apply-macete-with-minor-premises absolute-value-non-negative) simplify (apply-macete-with-minor-premises norm-continuity-lemma) (instantiate-existential ("min(z_0,z_$0)")) (unfold-single-defined-constant (0) min) (case-split ("z_0<=z_$0")) simplify simplify (apply-macete-with-minor-premises minimum-2nd-arg) (apply-macete-with-minor-premises minimum-1st-arg) (apply-macete-with-minor-premises interval-characterization) (instantiate-existential ("z_0" "x")) simplify (apply-macete-with-minor-premises absolute-value-non-negative) (apply-macete-with-minor-premises fractional-expression-manipulation) simplify (apply-macete-with-minor-premises fractional-expression-manipulation) (apply-macete-with-minor-premises ns-fractional-expression-manipulation) simplify )))
(def-transported-symbols ii%locally%lipschitz%bound (translation mapint-to-mapint-normed-space) (renamer identity))
(def-theorem derivative-bound-lemma "forall(f:[ii,uu], m:rr, 0<m and forall(x:ii,forsome(y:ii,x<y) implies norm(deriv(f,x))<=m) implies forall(m_0:rr,m<m_0 implies ii%locally%lipschitz%bound(f,m_0)))" (theory mappings-from-an-interval-to-a-normed-space) (proof ( (unfold-single-defined-constant (0) ii%locally%lipschitz%bound) (apply-macete-with-minor-premises derivative-at-point-bound-lemma) direct-and-antecedent-inference-strategy simplify (instantiate-existential ("m")) (backchain "with(p:prop, forall(x:ii,p))") (instantiate-existential ("z")) )))
(def-theorem mean-value-theorem "forall(f:[ii,uu], m:rr, total_q{f,[ii,uu]} and continuous(f) and 0<m and forall(x:ii,forsome(y:ii,x<y) implies norm(deriv(f,x))<=m) implies lipschitz%bound(f,m))" (theory mappings-from-an-interval-to-a-normed-space) (usages transportable-macete) (proof ( (apply-macete-with-minor-premises tr%locally-lipschitz-implies-lipschitz-plus) (apply-macete-with-minor-premises derivative-bound-lemma) direct-and-antecedent-inference-strategy (instantiate-existential ("m")) )))
(def-theorem constant-function-lipschitz-characterization "forall(f:[pp_0,pp_1], total_q{f,[pp_0,pp_1]} and forall(m:rr, 0<m implies lipschitz%bound(f,m)) implies forall(x,y:pp_0,f(x)=f(y)))" (theory metric-spaces-2-tuples) (usages transportable-macete) (proof ( unfold-defined-constants unfold-defined-constants direct-and-antecedent-inference-strategy (case-split ("0<dist_0(x,y)")) (apply-macete-with-minor-premises tr%point-separation-for-distance) (case-split ("0<dist_1(f(x),f(y))")) (cut-with-single-formula "dist_1(f(x),f(y))<=[1/2]*(dist_1(f(x),f(y))/dist_0(x,y))*dist_0(x,y)") (cut-with-single-formula "[1/2]*(dist_1(f(x),f(y))/dist_0(x,y))*dist_0(x,y)=[1/2]*dist_1(f(x),f(y))") (contrapose "with(y,x:pp_0,f:[pp_0,pp_1],0<dist_1(f(x),f(y)));") simplify simplify (backchain "with(p:prop, forall(m:rr, 0<m implies p))") direct-and-antecedent-inference-strategy (apply-macete-with-minor-premises fractional-expression-manipulation) simplify simplify-insistently simplify-insistently (cut-with-single-formula "0<=dist_1(f(x),f(y))") simplify (apply-macete-with-minor-premises tr%positivity-of-distance) (cut-with-single-formula "x=y") simplify (apply-macete-with-minor-premises tr%point-separation-for-distance) (cut-with-single-formula "0<=dist_0(x,y)") simplify (apply-macete-with-minor-premises tr%positivity-of-distance) )))
(def-theorem ms-constant-continuous "forall(y:pp_1,x:pp_0, continuous%at%point(lambda(x:pp_0,y),x))" (theory metric-spaces-2-tuples) (usages transportable-macete) (proof ( unfold-defined-constants direct-and-antecedent-inference-strategy (instantiate-existential ("1")) simplify (apply-macete-with-minor-premises tr%zero-self-distance) simplify )))
(def-theorem mean-value-theorem-corollary-0 "forall(f:[ii,uu], total_q{f,[ii,uu]} and continuous(f) and forall(x:ii,forsome(y:ii,x<y) implies deriv(f,x)=v0) implies forall(x,y:ii,f(x)=f(y)))" (theory mappings-from-an-interval-to-a-normed-space) (usages transportable-macete) (proof ( (apply-macete-with-minor-premises tr%constant-function-lipschitz-characterization) (apply-macete-with-minor-premises mean-value-theorem) direct-and-antecedent-inference-strategy (backchain "with(f:[ii,uu], forall(x:ii,forsome(y:ii,x<y) implies deriv(f,x)=v0))") direct-and-antecedent-inference-strategy auto-instantiate-existential simplify )))
(def-theorem additivity-of-deriv "forall(f,g:[ii,uu],x:ii, #(deriv(f,x)) and #(deriv(g,x)) implies deriv(lambda(x:ii,f(x)+g(x)),x)=deriv(f,x)+deriv(g,x))" (theory mappings-from-an-interval-to-a-normed-space) (usages transportable-macete) (proof ( (unfold-single-defined-constant-globally deriv) (force-substitution "(z_$0-x)^[-1]*((f(z_$0)+g(z_$0))-(f(x)+g(x)))" "lambda(z_$0:ii,(z_$0-x)^[-1]*(f(z_$0)-f(x)))(z_$0)+ lambda(z_$0:ii,(z_$0-x)^[-1]*(g(z_$0)-g(x)))(z_$0)" (0)) (move-to-sibling 1) simplify (apply-macete-with-minor-premises rlim-additivity) simplify )))
(def-theorem deriv-of-constant "forall(c:uu,x:ii, forsome(y:ii,x<y) implies deriv(lambda(x:ii,c),x)=v0)" (theory mappings-from-an-interval-to-a-normed-space) (usages transportable-macete) (proof ( (apply-macete-with-minor-premises characterization-of-derivative) direct-and-antecedent-inference-strategy beta-reduce-repeatedly simplify (instantiate-existential ("y")) )))
(def-theorem homogeneity-of-deriv "forall(f:[ii,uu],a:rr,x:ii, #(deriv(f,x)) implies deriv(lambda(x:ii,a*f(x)),x)=a*deriv(f,x))" (theory mappings-from-an-interval-to-a-normed-space) (usages transportable-macete) (proof ( (unfold-single-defined-constant-globally deriv) (force-substitution "(z_$0-x)^[-1]*(a*f(z_$0)-a*f(x))" "a*lambda(z_$0:ii,(z_$0-x)^[-1]*(f(z_$0)-f(x)))(z_$0)" (0)) (move-to-sibling 1) simplify (apply-macete-with-minor-premises rlim-homogeneity) simplify )))
(def-theorem ns-sum-of-continuous-is-continuous "forall(f,g:[ii,uu], x:ii, continuous%at%point(f,x) and continuous%at%point(g,x) implies continuous%at%point(lambda(x:ii,f(x)+g(x)),x))" (proof ( unfold-defined-constants direct-and-antecedent-inference-strategy (instantiate-universal-antecedent "with(p:prop, forall(eps:rr, 0<eps implies p))" ("eps_$0/2")) (simplify-antecedent "with(p:prop, not(p))") (instantiate-universal-antecedent "with(p:prop, forall(eps:rr, 0<eps implies p))" ("eps_$0/2")) (simplify-antecedent "with(p:prop, not(p))") (cut-with-single-formula "min(delta,delta_$0)<=delta and min(delta,delta_$0)<=delta_$0") (instantiate-existential ("min(delta,delta_$0)")) unfold-defined-constants (case-split ("delta<=delta_$0")) simplify simplify (apply-macete-with-minor-premises transitivity-of-<=) (instantiate-existential ("norm(f(x)-f(y_$1))+norm(g(x)-g(y_$1))")) (force-substitution "(f(x)+g(x))-(f(y_$1)+g(y_$1))" "(f(x)-f(y_$1))+(g(x)-g(y_$1))" (0)) (apply-macete-with-minor-premises norm-triangle-inequality) (cut-with-single-formula "norm(g(x)-g(y_$1))<=eps_$0/2") simplify (backchain "with(eps_$0:rr,g:[ii,uu],delta:rr,x:ii, forall(y:ii, abs(x-y)<=delta implies norm(g(x)-g(y))<=eps_$0/2));") simplify (cut-with-single-formula "norm(f(x)-f(y_$1))<=eps_$0/2") simplify (backchain "with(eps_$0:rr,f:[ii,uu],delta_$0:rr,x:ii, forall(y:ii, abs(x-y)<=delta_$0 implies norm(f(x)-f(y))<=eps_$0/2));") simplify simplify (cut-with-single-formula "norm(g(x)-g(y_$1))<=eps_$0/2 and norm(f(x)-f(y_$1))<=eps_$0/2") simplify direct-inference direct-and-antecedent-inference-strategy direct-and-antecedent-inference-strategy (apply-macete-with-minor-premises minimum-1st-arg) (apply-macete-with-minor-premises minimum-2nd-arg) ) ) (usages transportable-macete) (theory mappings-from-an-interval-to-a-normed-space))
(def-theorem ns-multiple-of-continuous-is-continuous "forall(f:[ii,uu], x:ii, a:rr, continuous%at%point(f,x) implies continuous%at%point(lambda(x:ii,a*f(x)),x))" (proof ( unfold-defined-constants direct-and-antecedent-inference-strategy (case-split ("a=0")) (instantiate-universal-antecedent "with(p:prop, forall(eps:rr, 0<eps implies p))" ("1")) (simplify-antecedent "not(0<1);") (instantiate-existential ("delta")) simplify (instantiate-universal-antecedent "with(p:prop, forall(eps:rr, 0<eps implies p))" ("eps_$0/abs(a)")) (contrapose "with(a,eps_$0:rr,not(0<eps_$0/abs(a)));") (apply-macete-with-minor-premises fractional-expression-manipulation) simplify (weaken (0 2)) (unfold-single-defined-constant (0) abs) (case-split ("0<=a")) simplify simplify (instantiate-existential ("delta")) (force-substitution "a*f(x)-a*f(y_$0)" "a*(f(x)-f(y_$0))" (0)) (apply-macete-with-minor-premises norm-scalar-multiplication) (instantiate-universal-antecedent "with(a,eps_$0:rr,f:[ii,uu],delta:rr,x:ii, forall(y:ii, abs(x-y)<=delta implies norm(f(x)-f(y))<=eps_$0/abs(a)));" ("y_$0")) (incorporate-antecedent "with(a,eps_$0:rr,y_$0,x:ii,f:[ii,uu], norm(f(x)-f(y_$0))<=eps_$0/abs(a));") (apply-macete-with-minor-premises fractional-expression-manipulation) simplify (weaken (0 1 3)) simplify (weaken (1 2)) simplify )) (usages transportable-macete) (theory mappings-from-an-interval-to-a-normed-space))
(def-theorem mean-value-theorem-corollary-1 "forall(f,g:[ii,uu], total_q{f,[ii,uu]} and total_q{g,[ii,uu]} and continuous(f) and continuous(g) and forall(x:ii,forsome(y:ii,x<y) implies deriv(f,x)=deriv(g,x)) and forsome(x,y:ii,f(x)=g(x) and x<y) implies forall(x:ii,f(x)=g(x)))" (theory mappings-from-an-interval-to-a-normed-space) (usages transportable-macete) (proof ( direct-and-antecedent-inference-strategy (cut-with-single-formula "forall(x,y:ii,lambda(x:ii,f(x)-g(x))(x)=lambda(x:ii,f(x)-g(x))(y))") (incorporate-antecedent "with(g,f:[ii,uu], forall(x,y:ii, lambda(x:ii,f(x)-g(x))(x)=lambda(x:ii,f(x)-g(x))(y)));") simplify direct-and-antecedent-inference-strategy (instantiate-universal-antecedent "with(g,f:[ii,uu],forall(x,y:ii,f(x)+g(y)=f(y)+g(x)));" ("x_$0" "x")) (incorporate-antecedent "with(x:ii,g:[ii,uu],x_$0:ii,f:[ii,uu], f(x_$0)+g(x)=f(x)+g(x_$0));") simplify (apply-macete-with-minor-premises mean-value-theorem-corollary-0) simplify insistent-direct-inference-strategy beta-reduce-repeatedly simplify (force-substitution "[-1]*g(x)" "lambda(x:ii,[-1]*g(x))(x)" (0)) (apply-macete-with-minor-premises tr%eps-delta-characterization-of-continuity) (apply-macete-with-minor-premises ns-sum-of-continuous-is-continuous) (apply-macete-with-minor-premises ns-multiple-of-continuous-is-continuous) (incorporate-antecedent "with(f:[ii,uu],continuous(f));") (incorporate-antecedent "with(g:[ii,uu],continuous(g));") (apply-macete-with-minor-premises tr%eps-delta-characterization-of-continuity) direct-and-antecedent-inference-strategy (weaken (7 6 5 3 2 1 0)) beta-reduce-repeatedly (force-substitution "[-1]*g(x)" "lambda(x:ii,[-1]*g(x))(x)" (0)) (apply-macete-with-minor-premises additivity-of-deriv) (apply-macete-with-minor-premises homogeneity-of-deriv) simplify simplify simplify simplify (weaken (0 1 2 3 4 6 7 8)) )))
(def-theorem locality-of-derivative "forall(f,g:[ii,uu],x:ii, forsome(y:ii, x<y and forall(t:ii, x<=t and t<y implies f(t)=g(t))) implies deriv(f,x)==deriv(g,x))" (theory mappings-from-an-interval-to-a-normed-space) (proof ( direct-and-antecedent-inference-strategy insistent-direct-inference-strategy (antecedent-inference "with(p,q:prop, p or q)") (cut-with-single-formula "forsome(v:uu, deriv(f,x)=v)") (antecedent-inference "with(x:ii,f:[ii,uu],forsome(v:uu,deriv(f,x)=v));") (backchain "with(v:uu,x:ii,f:[ii,uu],deriv(f,x)=v);") (force-substitution "v=deriv(g,x)" "deriv(g,x)=v" (0)) (incorporate-antecedent "with(v:uu,x:ii,f:[ii,uu],deriv(f,x)=v);") (apply-macete-with-minor-premises characterization-of-derivative) direct-and-antecedent-inference-strategy (auto-instantiate-universal-antecedent "with(p:prop, forall(eps:rr, 0<eps implies p))") (cut-with-single-formula "forsome(z:ii,x<z and z<=z_0 and z<y)") (antecedent-inference-strategy (0)) (instantiate-existential ("z")) (backchain-backwards "with(g,f:[ii,uu],y,x:ii, forall(t:ii,x<=t and t<y implies f(t)=g(t)));") (backchain-backwards "with(g,f:[ii,uu],y,x:ii, forall(t:ii,x<=t and t<y implies f(t)=g(t)));") direct-and-antecedent-inference-strategy simplify simplify simplify (backchain "with(eps:rr,v:uu,f:[ii,uu],z_0,x:ii, forall(z:ii, x<z and z<=z_0 implies norm((z-x)^[-1]*(f(z)-f(x))-v)<=eps));") simplify (cut-with-single-formula "forsome(z:ii,x<z and z<y)") (antecedent-inference "with(y,x:ii,forsome(z:ii,x<z and z<y));") (instantiate-existential ("min(z,z_0)")) (unfold-single-defined-constant (0) min) (case-split ("z<=z_0")) simplify simplify (apply-macete-with-minor-premises minimum-2nd-arg) (cut-with-single-formula "min(z,z_0)<=z") simplify (apply-macete-with-minor-premises minimum-1st-arg) (apply-macete-with-minor-premises interval-characterization) (instantiate-existential ("z_0" "x")) simplify (instantiate-existential ("(x+y)/2")) simplify simplify (apply-macete-with-minor-premises interval-characterization) (instantiate-existential ("y" "x")) simplify simplify simplify (instantiate-existential ("deriv(f,x)")) (cut-with-single-formula "forall(f,g:[ii,uu], #(deriv(f,x)) and forall(t:ii,x<=t and t<y implies f(t)=g(t)) and x<y implies deriv(f,x)=deriv(g,x) )") (force-substitution "deriv(f,x)=deriv(g,x)" "deriv(g,x)=deriv(f,x)" (0)) (backchain "with(y,x:ii, forall(f,g:[ii,uu], #(deriv(f,x)) and forall(t:ii,x<=t and t<y implies f(t)=g(t)) and x<y implies deriv(f,x)=deriv(g,x)));") direct-and-antecedent-inference-strategy (instantiate-universal-antecedent "with(g,f:[ii,uu],y,x:ii, forall(t:ii,x<=t and t<y implies f(t)=g(t)));" ("t")) simplify (weaken (1 2 0)) direct-and-antecedent-inference-strategy )))
(def-theorem derivative-of-a-linear-map "forall(a,b:uu,x:ii, forsome(y:ii,x<y) implies deriv(lambda(t:ii,t*a+b),x)=a)" (theory mappings-from-an-interval-to-a-normed-space) (proof ( (force-substitution "t*a+b" "lambda(t:ii,t*a)(t)+lambda(t:ii,b)(t)" (0)) (apply-macete-with-minor-premises additivity-of-deriv) (apply-macete-with-minor-premises deriv-of-constant) direct-and-antecedent-inference-strategy simplify (apply-macete-with-minor-premises characterization-of-derivative) beta-reduce-repeatedly (force-substitution "(z*a-x*a)" "(z-x)*a" (0)) simplify direct-and-antecedent-inference-strategy auto-instantiate-existential simplify (apply-macete-with-minor-premises deriv-of-constant) simplify simplify )))