(def-constant primitive "lambda(phi:[ii,uu],c:uu,x:ii, iota(f:[ii,uu], total_q{f,[ii,uu]} and continuous(f) and f(x)=c and forall(y:ii, forsome(z:ii,y<z) implies deriv(f,y)=phi(y))))" (theory mappings-from-an-interval-to-a-normed-space))
(def-theorem characterization-of-primitive "forall(phi:[ii,uu],c:uu,x:ii,v:[ii,uu], forsome(y:ii,x<y) implies primitive(phi,c,x)=v iff (total_q{v,[ii,uu]} and continuous(v) and v(x)=c and forall(y:ii,forsome(z:ii,y<z) implies deriv(v,y)=phi(y))))" (theory mappings-from-an-interval-to-a-normed-space) (usages transportable-macete) (proof ( (unfold-single-defined-constant (0) primitive) direct-inference direct-inference direct-inference (contrapose "with(a:[ii,uu],p:prop, iota(f:[ii,uu], p)=a)") (eliminate-defined-iota-expression 0 w) (contrapose "with(phi:[ii,uu],c:uu,x:ii,v:[ii,uu], forsome(x_0:ii,not(#(v(x_0)))) or not(continuous(v)) or not(v(x)=c) or forsome(y:ii, forsome(z:ii,y<z) and not(deriv(v,y)=phi(y))));") (backchain-backwards "with(v,w:[ii,uu],w=v);") (backchain-backwards "with(v,w:[ii,uu],w=v);") (backchain-backwards "with(v,w:[ii,uu],w=v);") (backchain-backwards "with(v,w:[ii,uu],w=v);") (apply-macete-with-minor-premises eliminate-iota-macete) direct-and-antecedent-inference-strategy extensionality insistent-direct-inference-strategy (apply-macete-with-minor-premises mean-value-theorem-corollary-1) direct-and-antecedent-inference-strategy (backchain "with(phi:[ii,uu],c:uu,x:ii,v:[ii,uu], total_q{v,[ii,uu]} and continuous(v) and v(x)=c and forall(y:ii,forsome(z:ii,y<z) implies deriv(v,y)=phi(y)));") direct-inference auto-instantiate-existential (backchain "with(phi,b:[ii,uu], forall(y:ii,forsome(z:ii,y<z) implies deriv(b,y)=phi(y)));") (instantiate-existential ("x" "y")) )))
(def-constant integral "lambda(a,b:ii,phi:[ii,uu], primitive(phi,v0,a)(b))" (theory mappings-from-an-interval-to-a-normed-space))
(def-theorem primitive-existence "forall(phi:[ii,uu],c:uu,x:ii, forsome(y:ii,x<y) implies #(primitive(phi,c,x)) iff forsome(v:[ii,uu], total_q{v,[ii,uu]} and continuous(v) and forall(y:ii,forsome(z:ii,y<z) implies deriv(v,y)=phi(y))))" (theory mappings-from-an-interval-to-a-normed-space) (proof ( direct-and-antecedent-inference-strategy (block (script-comment "`direct-and-antecedent-inference-strategy' at (0 0 0 0)") (cut-with-single-formula "forsome(v:[ii,uu],primitive(phi,c,x)=v)") (block (script-comment "`cut-with-single-formula' at (0)") (antecedent-inference "with(p:prop,forsome(v:[ii,uu],p));") (incorporate-antecedent "with(v,f:[ii,uu],f=v);") (apply-macete-with-minor-premises characterization-of-primitive) (block (script-comment "`apply-macete-with-minor-premises' at (0)") direct-and-antecedent-inference-strategy (instantiate-existential ("v")) ) auto-instantiate-existential ) (instantiate-existential ("primitive(phi,c,x)")) ) (block (script-comment "`direct-and-antecedent-inference-strategy' at (0 0 1 0 0 0)") (cut-with-single-formula "primitive(phi,c,x)=lambda(z:ii,c+v(z)-v(x))") (apply-macete-with-minor-premises characterization-of-primitive) (block (script-comment "`apply-macete-with-minor-premises' at (0)") beta-reduce-repeatedly insistent-direct-inference-strategy (block (script-comment "`insistent-direct-inference-strategy' at (0 0)") beta-reduce-repeatedly simplify ) (block (script-comment "`insistent-direct-inference-strategy' at (1)") (apply-macete-with-minor-premises tr%eps-delta-characterization-of-continuity) (force-substitution "c+v(z)-v(x)" "lambda(z:ii,c-v(x))(z)+v(z)" (0)) (block (script-comment "`force-substitution' at (0)") (apply-macete-with-minor-premises ns-sum-of-continuous-is-continuous) (apply-macete-with-minor-premises tr%ms-constant-continuous) direct-and-antecedent-inference-strategy (incorporate-antecedent "with(v:[ii,uu],continuous(v));") (apply-macete-with-minor-premises tr%eps-delta-characterization-of-continuity) direct-and-antecedent-inference-strategy ) simplify ) simplify (block (script-comment "`insistent-direct-inference-strategy' at (3 0 0)") (force-substitution "c+v(z)-v(x)" "lambda(z:ii,c-v(x))(z)+v(z)" (0)) (block (script-comment "`force-substitution' at (0)") (apply-macete-with-minor-premises additivity-of-deriv) (block (script-comment "`apply-macete-with-minor-premises' at (0)") (apply-macete-with-minor-premises deriv-of-constant) simplify ) simplify simplify ) simplify ) ) auto-instantiate-existential ) )))
(def-theorem endpoint-additivity-of-integral "forall(a,b,c:ii,f:[ii,uu], #(integral(a,b,f)) and #(integral(b,c,f)) and forsome(y:ii,a<y and b<y) implies integral(a,c,f)=integral(a,b,f)+integral(b,c,f))" (theory mappings-from-an-interval-to-a-normed-space) (proof ( unfold-defined-constants direct-and-antecedent-inference-strategy (cut-with-single-formula "forsome(v,w:[ii,uu],primitive(f,v0,a)=v and primitive(f,v0,b)=w)") (antecedent-inference "with(b,a:ii,f:[ii,uu], forsome(v,w:[ii,uu], primitive(f,v0,a)=v and primitive(f,v0,b)=w));") (backchain "with(p,q:prop, p and q)") (backchain "with(p,q:prop, p and q)") (backchain "with(p,q:prop, p and q)") (incorporate-antecedent "with(p,q:prop, p and q)") (apply-macete-with-minor-premises characterization-of-primitive) direct-and-antecedent-inference-strategy (cut-with-single-formula "v=lambda(c:ii,lambda(c:ii,v(b))(c)+w(c))") simplify (backchain "with(w:[ii,uu],b:ii,v:[ii,uu], v=lambda(c:ii,lambda(c:ii,v(b))(c)+w(c)));") beta-reduce-repeatedly simplify extensionality insistent-direct-inference insistent-direct-inference (apply-macete-with-minor-premises mean-value-theorem-corollary-1) direct-and-antecedent-inference-strategy insistent-direct-inference beta-reduce-repeatedly simplify (apply-macete-with-minor-premises tr%eps-delta-characterization-of-continuity) (apply-macete-with-minor-premises ns-sum-of-continuous-is-continuous) (apply-macete-with-minor-premises tr%ms-constant-continuous) (incorporate-antecedent "with(w:[ii,uu],continuous(w));") (apply-macete-with-minor-premises tr%eps-delta-characterization-of-continuity) (apply-macete-with-minor-premises additivity-of-deriv) (apply-macete-with-minor-premises deriv-of-constant) (backchain "with(f,w:[ii,uu], forall(y:ii,forsome(z:ii,y<z) implies deriv(w,y)=f(y)));") (backchain "with(f,v:[ii,uu], forall(y:ii,forsome(z:ii,y<z) implies deriv(v,y)=f(y)));") direct-and-antecedent-inference-strategy direct-inference auto-instantiate-existential (instantiate-existential ("y_$0")) simplify (cut-with-single-formula "deriv(w,x)=f(x)") (backchain "with(f,w:[ii,uu], forall(y:ii,forsome(z:ii,y<z) implies deriv(w,y)=f(y)));") (instantiate-existential ("z")) (cut-with-single-formula "deriv(w,x)=f(x)") (backchain "with(f,w:[ii,uu], forall(y:ii,forsome(z:ii,y<z) implies deriv(w,y)=f(y)));") (apply-macete-with-minor-premises deriv-of-constant) beta-reduce-repeatedly (instantiate-existential ("b" "y")) (backchain "with(b:ii,w:[ii,uu],w(b)=v0);") simplify (instantiate-existential ("y")) (instantiate-existential ("y")) (instantiate-existential ("primitive(f,v0,a)" "primitive(f,v0,b)")) )))
(def-theorem integral-on-null-interval-is-zero "forall(a:ii,f:[ii,uu], #(integral(a,a,f)) and forsome(y:ii,a<y) implies integral(a,a,f)=v0)" (theory mappings-from-an-interval-to-a-normed-space) (usages transportable-macete) (proof ( direct-and-antecedent-inference-strategy (cut-with-single-formula "integral(a,a,f)=integral(a,a,f)+integral(a,a,f)") (incorporate-antecedent "with(f:[ii,uu],a:ii, integral(a,a,f)=integral(a,a,f)+integral(a,a,f));") simplify (apply-macete-with-minor-premises endpoint-additivity-of-integral) auto-instantiate-existential )))
(def-theorem mean-value-theorem-for-integrals-preliminary-form "forall(a,b:ii,f:[ii,uu],m:rr, 0<m and forsome(y:ii,a<y) and #(integral(a,b,f)) and forall(x:ii,norm(f(x))<=m) implies norm(integral(a,b,f))<=m*abs(b-a))" (theory mappings-from-an-interval-to-a-normed-space) (proof ( (unfold-single-defined-constant (0 1) integral) direct-and-antecedent-inference-strategy (cut-with-single-formula "forsome(v:[ii,uu], primitive(f,v0,a)=v)") (antecedent-inference "with(p:prop,forsome(v:[ii,uu],p))") (backchain "with(v:[ii,uu],a:ii,f:[ii,uu],primitive(f,v0,a)=v);") (incorporate-antecedent "with(v:[ii,uu],a:ii,f:[ii,uu],primitive(f,v0,a)=v);") (apply-macete-with-minor-premises characterization-of-primitive) direct-and-antecedent-inference-strategy (cut-with-single-formula "lipschitz%bound(v,m)") (incorporate-antecedent "with(m:rr,v:[ii,uu],lipschitz%bound(v,m));") (incorporate-antecedent "with(f,v:[ii,uu], forall(y:ii,forsome(z:ii,y<z) implies deriv(v,y)=f(y)));") (unfold-single-defined-constant (0) uu%lipschitz%bound) (unfold-single-defined-constant (0) uu%%lipschitz%bound%on) direct-and-antecedent-inference-strategy (force-substitution "v(b)" "v(b)-v(a)" (0)) (backchain "with(m:rr,v:[ii,uu], forall(x_$0,y_$0:ii, x_$0 in sort_to_indic{ii} and y_$0 in sort_to_indic{ii} implies norm(v(x_$0)-v(y_$0))<=m*abs(x_$0-y_$0)));") simplify simplify (apply-macete-with-minor-premises mean-value-theorem) direct-and-antecedent-inference-strategy (backchain "with(f,v:[ii,uu], forall(y:ii,forsome(z:ii,y<z) implies deriv(v,y)=f(y)));") direct-inference (instantiate-existential ("y_$0")) (backchain "with(m:rr,f:[ii,uu],forall(x:ii,norm(f(x))<=m));") auto-instantiate-existential (instantiate-existential ("primitive(f,v0,a)")) )))
(def-theorem additivity-of-integral "forall(a,b:ii,f,g:[ii,uu], #(integral(a,b,f)) and #(integral(a,b,g)) and forsome(y:ii,a<y) implies integral(a,b,lambda(x:ii,f(x)+g(x))) =integral(a,b,f)+integral(a,b,g))" (theory mappings-from-an-interval-to-a-normed-space) (proof ( unfold-defined-constants direct-and-antecedent-inference-strategy (cut-with-single-formula "forsome(v,w:[ii,uu],primitive(f,v0,a)=v and primitive(g,v0,a)=w)") (antecedent-inference "with(p,q:prop, forsome(v,w:[ii,uu], p and q))") (backchain "with(p,q:prop, p and q)") (backchain "with(p,q:prop, p and q)") (cut-with-single-formula "primitive(lambda(x:ii,f(x)+g(x)),v0,a)=lambda(b:ii,v(b)+w(b))") simplify (incorporate-antecedent "with(p,q:prop, p and q)") (apply-macete-with-minor-premises characterization-of-primitive) direct-and-antecedent-inference-strategy insistent-direct-inference simplify (incorporate-antecedent "with(v:[ii,uu],continuous(v));") (incorporate-antecedent "with(w:[ii,uu],continuous(w));") (apply-macete-with-minor-premises tr%eps-delta-characterization-of-continuity) (apply-macete-with-minor-premises ns-sum-of-continuous-is-continuous) direct-and-antecedent-inference-strategy (backchain "with(v:[ii,uu],forall(x:ii,continuous%at%point(v,x)));") (backchain "with(w:[ii,uu],forall(x:ii,continuous%at%point(w,x)));") simplify (apply-macete-with-minor-premises additivity-of-deriv) simplify (backchain "with(f,v:[ii,uu], forall(y:ii,forsome(z:ii,y<z) implies deriv(v,y)=f(y)));") (backchain "with(g,w:[ii,uu], forall(y:ii,forsome(z:ii,y<z) implies deriv(w,y)=g(y)));") direct-and-antecedent-inference-strategy auto-instantiate-existential (weaken (14 15 13 11 10 9 7 6 3 2)) (cut-with-single-formula "deriv(v,y_$0)=f(y_$0) and deriv(w,y_$0)=g(y_$0)") simplify direct-inference (backchain "with(f,v:[ii,uu], forall(y:ii,forsome(z:ii,y<z) implies deriv(v,y)=f(y)));") auto-instantiate-existential (backchain "with(g,w:[ii,uu], forall(y:ii,forsome(z:ii,y<z) implies deriv(w,y)=g(y)));") (weaken (1 2 5 6 8 9 10 12 13 14)) (cut-with-single-formula "deriv(w,y_$0)=g(y_$0)") (backchain "with(g,w:[ii,uu], forall(y:ii,forsome(z:ii,y<z) implies deriv(w,y)=g(y)));") auto-instantiate-existential (weaken (8 9 10 13 14 5 1 2 2 5)) (cut-with-single-formula "deriv(v,y_$0)=f(y_$0)") (backchain "with(f,v:[ii,uu], forall(y:ii,forsome(z:ii,y<z) implies deriv(v,y)=f(y)));") auto-instantiate-existential auto-instantiate-existential auto-instantiate-existential auto-instantiate-existential (instantiate-existential ("primitive(f,v0,a)" "primitive(g,v0,a)")) )))
(def-theorem homogeneity-of-integral "forall(a,b:ii,c:rr,f:[ii,uu], #(integral(a,b,f)) and forsome(y:ii,a<y) implies integral(a,b,lambda(x:ii,c*f(x)))=c*integral(a,b,f))" (theory mappings-from-an-interval-to-a-normed-space) (proof ( unfold-defined-constants direct-and-antecedent-inference-strategy (cut-with-single-formula "forsome(v:[ii,uu],primitive(f,v0,a)=v)") (antecedent-inference "with(p:prop, forsome(v:[ii,uu], p))") (backchain "with(a,b:[ii,uu],a=b)") (cut-with-single-formula "primitive(lambda(x:ii,c*f(x)),v0,a)=lambda(b:ii, c*v(b))") simplify (incorporate-antecedent "with(a,b:[ii,uu],a=b)") (apply-macete-with-minor-premises characterization-of-primitive) direct-and-antecedent-inference-strategy insistent-direct-inference simplify (incorporate-antecedent "with(v:[ii,uu],continuous(v));") (apply-macete-with-minor-premises tr%eps-delta-characterization-of-continuity) (apply-macete-with-minor-premises ns-multiple-of-continuous-is-continuous) simplify (apply-macete-with-minor-premises homogeneity-of-deriv) (backchain "with(f,v:[ii,uu], forall(y:ii,forsome(z:ii,y<z) implies deriv(v,y)=f(y)));") direct-inference auto-instantiate-existential simplify (cut-with-single-formula "deriv(v,y_$0)=f(y_$0)") (backchain "with(f,v:[ii,uu], forall(y:ii,forsome(z:ii,y<z) implies deriv(v,y)=f(y)));") (cut-with-single-formula "deriv(v,y_$0)=f(y_$0)") (backchain "with(f,v:[ii,uu], forall(y:ii,forsome(z:ii,y<z) implies deriv(v,y)=f(y)));") auto-instantiate-existential auto-instantiate-existential (instantiate-existential ("primitive(f,v0,a)")) )))
(def-theorem ns-vector-multiple-of-continuous-is-continuous "forall(f:[ii,rr], x:ii, a:uu, continuous%at%point(f,x) implies continuous%at%point(lambda(x:ii,f(x)*a),x))" (theory mappings-from-an-interval-to-a-normed-space) (proof ( unfold-defined-constants direct-and-antecedent-inference-strategy (case-split ("a=v0")) (instantiate-universal-antecedent "with(p:prop, forall(eps:rr, 0<eps implies p))" ("1")) (simplify-antecedent "not(0<1);") (instantiate-existential ("delta")) simplify (instantiate-universal-antecedent "with(p:prop, forall(eps:rr, 0<eps implies p))" ("eps_$0/norm(a)")) (contrapose "not(0<eps_$0/norm(a))") (apply-macete-with-minor-premises fractional-expression-manipulation) simplify (weaken (0 2)) (cut-with-single-formula "not(norm(a)=0)") simplify (apply-macete-with-minor-premises norm-zero) (instantiate-existential ("delta")) (force-substitution "f(x)*a-f(y_$0)*a" "(f(x)-f(y_$0))*a" (0)) (apply-macete-with-minor-premises norm-scalar-multiplication) (instantiate-universal-antecedent "with(p:prop, forall(y:ii, p))" ("y_$0")) (incorporate-antecedent "abs(f(x)-f(y_$0))<=eps_$0/norm(a)") (apply-macete-with-minor-premises fractional-expression-manipulation) (weaken (0 1 3)) simplify (cut-with-single-formula "0<norm(a)") simplify (weaken (1 2)) )))
(def-theorem integral-of-a-constant "forall(a,b:ii,c:uu, forsome(y:ii,a<y) implies integral(a,b,lambda(t:ii,c))=(b-a)*c)" (theory mappings-from-an-interval-to-a-normed-space) (proof ( unfold-defined-constants direct-and-antecedent-inference-strategy (cut-with-single-formula "primitive(lambda(t:ii,c),v0,a)=lambda(b:ii,(b-a)*c)") simplify (apply-macete-with-minor-premises characterization-of-primitive) direct-and-antecedent-inference-strategy insistent-direct-inference beta-reduce-repeatedly (apply-macete-with-minor-premises tr%eps-delta-characterization-of-continuity) direct-and-antecedent-inference-strategy (force-substitution "(b-a)*c" "lambda(b:ii,b*c)(b)+lambda(b:ii,a*([-1]*c))(b)" (0)) (apply-macete-with-minor-premises ns-sum-of-continuous-is-continuous) (apply-macete-with-minor-premises tr%ms-constant-continuous) (force-substitution "b" "lambda(b:ii,b)(b)" (0)) (apply-macete-with-minor-premises ns-vector-multiple-of-continuous-is-continuous) (apply-macete-with-minor-premises tr%lipschitz-bound-is-continuous) direct-and-antecedent-inference-strategy (instantiate-existential ("1")) (unfold-single-defined-constant (0) lipschitz%bound_2) (unfold-single-defined-constant (0) lipschitz%bound%on_2) direct-and-antecedent-inference-strategy simplify simplify beta-reduce-repeatedly simplify simplify (force-substitution "(b-a)*c" "b*c+[-1]*a*c" (0)) (apply-macete-with-minor-premises derivative-of-a-linear-map) beta-reduce-repeatedly (instantiate-existential ("z")) simplify auto-instantiate-existential )))
(def-theorem mean-value-theorem-for-integrals "forall(a,b:ii,f:[ii,uu],m:rr, forsome(y:ii,a<y) and #(integral(a,b,f)) and forall(x:ii,norm(f(x))<=m) implies norm(integral(a,b,f))<=m*abs(b-a))" (theory mappings-from-an-interval-to-a-normed-space) (proof ( direct-and-antecedent-inference-strategy (cut-with-single-formula "m<0 or m=0 or 0<m") (antecedent-inference "with(m:rr,m<0 or m=0 or 0<m);") (cut-with-single-formula "norm(f(x))<=m") (cut-with-single-formula "0<=norm(f(x))") simplify (apply-macete-with-minor-premises positivity-of-norm) (backchain "with(m:rr,f:[ii,uu],forall(x:ii,norm(f(x))<=m));") simplify (cut-with-single-formula "f=lambda(x:ii,v0)") (backchain "with(f:[ii,uu],f=lambda(x:ii,v0));") (apply-macete-with-minor-premises integral-of-a-constant) simplify auto-instantiate-existential extensionality direct-and-antecedent-inference-strategy beta-reduce-repeatedly (cut-with-single-formula "norm(f(x_0))=0") (incorporate-antecedent "with(x:ii,f:[ii,uu],norm(f(x_0))=0);") (apply-macete-with-minor-premises norm-zero) (cut-with-single-formula "0<=norm(f(x_0))") simplify (apply-macete-with-minor-premises positivity-of-norm) (apply-macete-with-minor-premises mean-value-theorem-for-integrals-preliminary-form) direct-and-antecedent-inference-strategy auto-instantiate-existential simplify )))
(def-theorem splicing-pointwise-continuous-functions "forall(f,g:[ii,pp],x:ii, continuous%at%point(f,x) and continuous%at%point(g,x) and f(x)=g(x) implies continuous%at%point(lambda(t:ii,if(t<=x, f(t), g(t))),x))" (theory mappings-from-an-interval) (proof ( (force-substitution "t<=x" "t in indic{t:ii, t<=x}" (0)) (move-to-sibling 1) simplify-insistently (apply-macete-with-minor-premises tr%splicing-continuous-functions-lemma-1) )) (usages transportable-macete))
(def-theorem splicing-continuous-functions "forall(f,g:[ii,pp],x:ii, total_q{f,[ii,pp]} and total_q{g,[ii,pp]} and continuous(f) and continuous(g) and f(x)=g(x) implies continuous(lambda(t:ii,if(t<=x, f(t), g(t)))))" (theory mappings-from-an-interval) (proof ( (apply-macete-with-minor-premises tr%eps-delta-characterization-of-continuity) direct-and-antecedent-inference-strategy (case-split ("x_$0=x")) (block (force-substitution "t<=x" "t in indic{t:ii, t<=x}" (0)) (move-to-sibling 1) simplify-insistently (apply-macete-with-minor-premises tr%splicing-continuous-functions-lemma-1) simplify) (apply-macete-with-minor-premises tr%splicing-continuous-functions-lemma-2) (apply-macete-with-minor-premises tr%open-ball-membership-condition) beta-reduce-repeatedly (case-split ("x_$0<x")) (block (instantiate-existential ("f")) (instantiate-existential ("x-x_$0")) simplify (cut-with-single-formula "z_$0<=x") simplify (contrapose "with(x_$0,x:ii,r:rr,abs(r)<x-x_$0);") (unfold-single-defined-constant (0) abs) simplify) (block (instantiate-existential ("g")) (instantiate-existential ("x_$0-x")) simplify (cut-with-single-formula "x<z_$0") simplify (contrapose "with(x,x_$0:ii,r:rr,abs(r)<x_$0-x);") (unfold-single-defined-constant (0) abs) simplify) (block (script-comment "totality") simplify-insistently direct-and-antecedent-inference-strategy (case-split ("x_0<=x")) simplify simplify)) ) (usages transportable-macete))
(def-constant integrable "lambda(f:[ii,uu], forsome(c:uu, x,y:ii, x<y and #(primitive(f,c,x))))" (theory mappings-from-an-interval-to-a-normed-space))
(def-theorem integrability-condition "forall(f:[ii,uu], integrable(f) implies forall(c:uu, x,y:ii, x<y implies #(primitive(f,c,x))))" (usages transportable-macete) (theory mappings-from-an-interval-to-a-normed-space) (proof ( (unfold-single-defined-constant (0) integrable) (apply-macete-with-minor-premises primitive-existence) direct-and-antecedent-inference-strategy auto-instantiate-existential auto-instantiate-existential )))
(def-theorem integrable-implies-integral-exists "forall(f:[ii,uu], integrable(f) implies forall(x,y,z:ii, x<z implies #(integral(x,y,f))))" (usages transportable-macete) (theory mappings-from-an-interval-to-a-normed-space) (proof ( direct-and-antecedent-inference-strategy (unfold-single-defined-constant (0) integral) (cut-with-single-formula "forsome(v:[ii,uu],primitive(f,v0,x)=v)") (antecedent-inference "with(x:ii,f:[ii,uu],forsome(v:[ii,uu],primitive(f,v0,x)=v));") (backchain "with(v:[ii,uu],x:ii,f:[ii,uu],primitive(f,v0,x)=v);") (incorporate-antecedent "with(v:[ii,uu],x:ii,f:[ii,uu],primitive(f,v0,x)=v);") (apply-macete-with-minor-premises characterization-of-primitive) direct-and-antecedent-inference-strategy auto-instantiate-existential (cut-with-single-formula "#(primitive(f,v0,x))") (instantiate-existential ("primitive(f,v0,x)")) (apply-macete-with-minor-premises integrability-condition) (instantiate-existential ("z")) )))
(def-theorem integrable-implies-integral-is-continuous "forall(f:[ii,uu],x,y:ii, integrable(f) and x<y implies continuous(lambda(y:ii, integral(x,y,f))))" (usages transportable-macete) (theory mappings-from-an-interval-to-a-normed-space) (proof ( direct-and-antecedent-inference-strategy (unfold-single-defined-constant (0) integral) (cut-with-single-formula "forsome(v:[ii,uu], primitive(f,v0,x)=v)") (antecedent-inference "with(x:ii,f:[ii,uu],forsome(v:[ii,uu],primitive(f,v0,x)=v));") (backchain "with(v:[ii,uu],x:ii,f:[ii,uu],primitive(f,v0,x)=v);") (apply-macete-with-minor-premises tr%unary-eta-reduction) (incorporate-antecedent "with(v:[ii,uu],x:ii,f:[ii,uu],primitive(f,v0,x)=v);") (apply-macete-with-minor-premises characterization-of-primitive) direct-and-antecedent-inference-strategy auto-instantiate-existential (cut-with-single-formula "#(primitive(f,v0,x))") (instantiate-existential ("primitive(f,v0,x)")) (apply-macete-with-minor-premises integrability-condition) (instantiate-existential ("y")) )))
(def-theorem fundamental-theorem-of-calculus "forall(f:[ii,uu],a,b:ii, forsome(y,z:ii, a<y and b<z) and integrable(f) implies deriv(lambda(y:ii,integral(a,y,f)),b)=f(b))" (usages transportable-macete) (theory mappings-from-an-interval-to-a-normed-space) (proof ( direct-and-antecedent-inference-strategy (unfold-single-defined-constant (0) integral) (cut-with-single-formula "forsome(v:[ii,uu], primitive(f,v0,a)=v)") (antecedent-inference "with(a:ii,f:[ii,uu],forsome(v:[ii,uu],primitive(f,v0,a)=v));") (backchain "with(v:[ii,uu],a:ii,f:[ii,uu],primitive(f,v0,a)=v);") (apply-macete-with-minor-premises tr%unary-eta-reduction) (incorporate-antecedent "with(v:[ii,uu],a:ii,f:[ii,uu],primitive(f,v0,a)=v);") (apply-macete-with-minor-premises characterization-of-primitive) direct-and-antecedent-inference-strategy (backchain "with(f,v:[ii,uu], forall(y:ii,forsome(z:ii,y<z) implies deriv(v,y)=f(y)));") auto-instantiate-existential auto-instantiate-existential (cut-with-single-formula "#(primitive(f,v0,a))") (instantiate-existential ("primitive(f,v0,a)")) (apply-macete-with-minor-premises integrability-condition) (instantiate-existential ("y")) )))
(def-theorem piecewise-integrable-is-integrable "forall(f,g:[ii,uu], x:ii, integrable(f) and integrable(g) and forsome(z:ii, x<z) implies integrable(lambda(y:ii,if(y<x,f(y),g(y)))))" (usages transportable-macete) (theory mappings-from-an-interval-to-a-normed-space) (proof ( direct-inference (case-split ("forsome(y:ii,x<y)")) (antecedent-inference "with(x:ii,forsome(y:ii,x<y));") direct-and-antecedent-inference-strategy (unfold-single-defined-constant (0) integrable) (apply-macete-with-minor-premises primitive-existence) (instantiate-existential ("c_$0" "x" "y")) (instantiate-existential ("lambda(y:ii, if(y<=x,integral(x,y,f),integral(x,y,g)))")) insistent-direct-inference beta-reduce-repeatedly (cut-with-single-formula "#(integral(x,x_$0,f)) and #(integral(x,x_$0,g))") simplify (apply-macete-with-minor-premises integrable-implies-integral-exists) direct-inference (instantiate-existential ("y")) (instantiate-existential ("y")) (force-substitution "if(y<=x, integral(x,y,f), integral(x,y,g))" "if(y<=x, lambda(y:ii,integral(x,y,f))(y), lambda(y:ii,integral(x,y,g))(y))" (0)) (apply-macete-with-minor-premises tr%splicing-continuous-functions) direct-and-antecedent-inference-strategy insistent-direct-inference beta-reduce-repeatedly insistent-direct-inference beta-reduce-repeatedly (apply-macete-with-minor-premises integrable-implies-integral-is-continuous) (apply-macete-with-minor-premises integrable-implies-integral-is-continuous) (instantiate-existential ("y")) beta-reduce-repeatedly (apply-macete-with-minor-premises integral-on-null-interval-is-zero) (apply-macete-with-minor-premises integrable-implies-integral-exists) auto-instantiate-existential (apply-macete-with-minor-premises integrable-implies-integral-exists) beta-reduce-repeatedly (case-split ("y_$0<x")) simplify (force-substitution "deriv(lambda(y:ii, if(y<=x, integral(x,y,f), integral(x,y,g))), y_$0)" "deriv(lambda(y:ii, integral(x,y,f)),y_$0)" (0)) (assume-theorem fundamental-theorem-of-calculus) (backchain "forall(f:[ii,uu],a,b:ii, forsome(y,z:ii,a<y and b<z) and integrable(f) implies deriv(lambda(y:ii,integral(a,y,f)),b)=f(b));") direct-inference (instantiate-existential ("y" "z_$1")) (apply-macete-with-minor-premises locality-of-derivative) (instantiate-existential ("x")) simplify (apply-macete-with-minor-premises integrable-implies-integral-exists) simplify (force-substitution "deriv(lambda(y:ii, if(y<=x, integral(x,y,f), integral(x,y,g))), y_$0)" "deriv(lambda(y:ii,integral(x,y,g)),y_$0)" (0)) (assume-theorem fundamental-theorem-of-calculus) (backchain "forall(f:[ii,uu],a,b:ii, forsome(y,z:ii,a<y and b<z) and integrable(f) implies deriv(lambda(y:ii,integral(a,y,f)),b)=f(b));") direct-inference (instantiate-existential ("y" "z_$1")) (apply-macete-with-minor-premises locality-of-derivative) beta-reduce-repeatedly (instantiate-existential ("z_$1")) (case-split ("x=t")) simplify (apply-macete-with-minor-premises integral-on-null-interval-is-zero) (apply-macete-with-minor-premises integrable-implies-integral-exists) (instantiate-existential ("y")) (instantiate-existential ("z_$1")) (apply-macete-with-minor-premises integrable-implies-integral-exists) (instantiate-existential ("z_$1")) simplify (apply-macete-with-minor-premises integrable-implies-integral-exists) (instantiate-existential ("y_$0")) direct-inference )))