(def-translation normed-spaces-to-rr (source normed-linear-spaces) (target h-o-real-arithmetic) (fixed-theories h-o-real-arithmetic) (sort-pairs (uu rr)) (constant-pairs (++ +) (** *) (v0 0) (norm abs)) (theory-interpretation-check using-simplification))
(def-translation mappings-on-interval-into-ns-to-rr (source mappings-from-an-interval-to-a-normed-space) (target fixed-interval-theory) (core-translation normed-spaces-to-rr) (theory-interpretation-check using-simplification))
(def-transported-symbols (deriv primitive integral) (translation mappings-on-interval-into-ns-to-rr) (renamer calculus-renamer) )
(def-theorem additivity-of-rr-derivative "forall(f,g:[ii,rr],x:ii, #(rr%deriv(f,x)) and #(rr%deriv(g,x)) implies rr%deriv(lambda(x:ii,f(x)+g(x)),x) =rr%deriv(f,x)+rr%deriv(g,x));" (theory fixed-interval-theory) (proof ( (apply-macete-with-minor-premises tr%additivity-of-deriv) simplify )))