(def-translation normed-spaces-to-rr
(source normed-linear-spaces)
(target h-o-real-arithmetic)
(fixed-theories h-o-real-arithmetic)
(sort-pairs (uu rr))
(constant-pairs (++ +)
(** *)
(v0 0)
(norm abs))
(theory-interpretation-check using-simplification))
(def-translation mappings-on-interval-into-ns-to-rr
(source mappings-from-an-interval-to-a-normed-space)
(target fixed-interval-theory)
(core-translation normed-spaces-to-rr)
(theory-interpretation-check using-simplification))
(def-transported-symbols (deriv primitive integral)
(translation mappings-on-interval-into-ns-to-rr)
(renamer calculus-renamer)
)
(def-theorem additivity-of-rr-derivative
"forall(f,g:[ii,rr],x:ii,
#(rr%deriv(f,x)) and #(rr%deriv(g,x))
implies
rr%deriv(lambda(x:ii,f(x)+g(x)),x)
=rr%deriv(f,x)+rr%deriv(g,x));"
(theory fixed-interval-theory)
(proof
(
(apply-macete-with-minor-premises tr%additivity-of-deriv)
simplify
)))