(def-language mappings-from-an-interval-to-ns-extension (embedded-languages mappings-from-an-interval-to-a-normed-space) (constants (a ii) (b ii)))
(def-theory mappings-from-an-interval-with-endpoints-to-a-normed-space (language mappings-from-an-interval-to-ns-extension) (component-theories mappings-from-an-interval-to-a-normed-space) (axioms (endpoint-ordering "a<b")))
(def-theorem () "lambda(x:ii,a<=x and x<b)((a+b)/2)" (theory mappings-from-an-interval-with-endpoints-to-a-normed-space) (proof ( simplify (apply-macete-with-minor-premises interval-characterization) (instantiate-existential ("b" "a")) simplify simplify )))
(def-atomic-sort jj "lambda(x:ii, a<=x and x<b)" (theory mappings-from-an-interval-with-endpoints-to-a-normed-space) (witness "(a+b)/2"))
(def-theorem () "forall(x:rr, forsome(u:jj,u<=x) and forsome(v:jj,x<=v) implies #(x,jj))" lemma (theory mappings-from-an-interval-with-endpoints-to-a-normed-space) (proof ( direct-and-antecedent-inference-strategy (cut-with-single-formula "#(u,jj) and #(v,jj)") (incorporate-antecedent "with(v,u:jj,#(u,jj) and #(v,jj));") (apply-macete-with-minor-premises jj-defining-axiom_mappings-from-an-interval-with-endpoints-to-a-normed-space) beta-reduce-repeatedly direct-and-antecedent-inference-strategy beta-reduce-with-minor-premises simplify (apply-macete-with-minor-premises interval-characterization) (instantiate-existential ("b" "a")) simplify simplify )))
(def-theorem () "forsome(x,y:jj,x<y)" (theory mappings-from-an-interval-with-endpoints-to-a-normed-space) lemma (proof ( (instantiate-existential ("1/3*b+2/3*a" "1/3*a+2/3*b")) simplify (apply-macete-with-minor-premises jj-defining-axiom_mappings-from-an-interval-with-endpoints-to-a-normed-space) simplify (apply-macete-with-minor-premises interval-characterization) (instantiate-existential ("b" "a")) simplify simplify (apply-macete-with-minor-premises jj-defining-axiom_mappings-from-an-interval-with-endpoints-to-a-normed-space) simplify (apply-macete-with-minor-premises interval-characterization) (instantiate-existential ("b" "a")) simplify simplify )))
(def-theory-ensemble-instances metric-spaces force-under-quick-load (target-theories mappings-from-an-interval-with-endpoints-to-a-normed-space mappings-from-an-interval-with-endpoints-to-a-normed-space) (permutations (0 1)) (theory-interpretation-check using-simplification) (sorts (pp jj uu)) (constants (dist "lambda(x,y:jj, abs(x-y))" "lambda(x,y:uu, norm(x-y))")) (special-renamings (uniformly%continuous uniformly%continuous%jj%uu) (continuous%at%point continuous%at%point%jj%uu) (lipschitz%bound lipschitz%bound%jj%uu) (lipschitz%bound%on lipschitz%bound%on%jj%uu)))
(def-translation mappings-from-an-interval-to-ns-extension-specialization force-under-quick-load (source mappings-from-an-interval-to-a-normed-space) (target mappings-from-an-interval-with-endpoints-to-a-normed-space) (fixed-theories h-o-real-arithmetic) (sort-pairs (ii jj)) (theory-interpretation-check using-simplification))
(def-transported-symbols (deriv) (translation mappings-from-an-interval-to-ns-extension-specialization) (renamer deriv-res-renamer) )
(def-theorem deriv_r-restricts-deriv-lemma "forall(f:[jj,uu], x:jj, #(deriv(f,x)) implies deriv(f,x)=deriv_r(f,x))" (theory mappings-from-an-interval-with-endpoints-to-a-normed-space) lemma reverse (proof ( direct-and-antecedent-inference-strategy (case-split ("forsome(v:uu,deriv(f,x)=v)")) (antecedent-inference "with(x:jj,f:[jj,uu],forsome(v:uu,deriv(f,x)=v));") (backchain "with(v:uu,x:jj,f:[jj,uu],deriv(f,x)=v);") (cut-with-single-formula "deriv_r(f,x)=v") (incorporate-antecedent "with(v:uu,x:jj,f:[jj,uu],deriv(f,x)=v);") (apply-macete-with-minor-premises characterization-of-derivative) (apply-macete-with-minor-premises tr%characterization-of-derivative) direct-and-antecedent-inference-strategy (auto-instantiate-universal-antecedent "with(p:prop,forall(eps:rr,0<eps implies p))") (cut-with-single-formula "forsome(u:jj, x<u and u<b and u<=z_0)") (antecedent-inference "with(z_0:ii,x:jj,forsome(u:jj,x<u and u<b and u<=z_0));") (instantiate-existential ("u")) (backchain "with(p:prop, forall(z:ii,p))") simplify (instantiate-existential ("min((b+x)/2,z_0)")) (cut-with-single-formula "a<=x and x<b") (unfold-single-defined-constant (0) min) (case-split ("(b+x)/2<=z_0")) simplify simplify (cut-with-single-formula "#(x,jj)") (incorporate-antecedent "with(x:jj,#(x,jj));") (apply-macete-with-minor-premises jj-defining-axiom_mappings-from-an-interval-with-endpoints-to-a-normed-space) simplify (cut-with-single-formula "x<b and min((b+x)/2,z_0)<=(b+x)/2") simplify (apply-macete-with-minor-premises minimum-1st-arg) (apply-macete-with-minor-premises minimum-2nd-arg) (apply-macete-with-minor-premises jj-defining-axiom_mappings-from-an-interval-with-endpoints-to-a-normed-space) simplify (apply-macete-with-minor-premises interval-characterization) (instantiate-existential ("b" "a")) (unfold-single-defined-constant (0) min) (case-split ("[1/2]*b+[1/2]*x<=z_0")) simplify (cut-with-single-formula "#(x,jj)") (incorporate-antecedent "with(x:jj,#(x,jj));") (apply-macete-with-minor-premises jj-defining-axiom_mappings-from-an-interval-with-endpoints-to-a-normed-space) beta-reduce-with-minor-premises direct-and-antecedent-inference-strategy simplify simplify )))
(def-theory-ensemble-overloadings metric-spaces (1 2))
(def-theorem constant-on-subintervals "forall(f:[jj,uu], total_q{f,[jj,uu]} and continuous(f) and forall(x:jj, deriv(f,x)=v0) implies forall(x,y:jj,f(x)=f(y)))" lemma (theory mappings-from-an-interval-with-endpoints-to-a-normed-space) (proof ( (apply-macete-with-minor-premises tr%mean-value-theorem-corollary-0) direct-and-antecedent-inference-strategy (apply-macete-with-minor-premises rev%deriv_r-restricts-deriv-lemma) (backchain "with(f:[jj,uu],forall(x:jj,deriv(f,x)=v0));") )))
(def-theorem constant-on-subintervals-corollary "forall(f:[ii,uu], total_q{f,[jj,uu]} and forall(x:jj,continuous%at%point(f,x)) and forall(x:jj, deriv(f,x)=v0) implies forall(x,y:jj,f(x)=f(y)))" (home-theory mappings-from-an-interval-with-endpoints-to-a-normed-space) (theory mappings-from-an-interval-to-a-normed-space) (usages transportable-macete) (proof ( direct-and-antecedent-inference-strategy (force-substitution "f(x)=f(y)" "lambda(z:jj,f(z))(x)=lambda(z:jj,f(z))(y)" (0)) (apply-macete-with-minor-premises constant-on-subintervals) direct-and-antecedent-inference-strategy insistent-direct-inference beta-reduce-repeatedly (apply-macete-with-minor-premises tr%eps-delta-characterization-of-continuity) (weaken (0 1)) (incorporate-antecedent "with(f:[ii,uu],forall(x:jj,continuous%at%point(f,x)));") unfold-defined-constants direct-and-antecedent-inference-strategy (instantiate-universal-antecedent "with(p:prop, forall(x:jj, forall(eps:rr, 0<eps implies p)))" ("x_$0")) (auto-instantiate-universal-antecedent "with(p:prop, forall(eps:rr, 0<eps implies p))") (instantiate-existential ("delta_$0")) (backchain "with(p,q:prop, forall(y_$0:ii, p implies q))") (cut-with-single-formula "deriv(lambda(z:jj,f(z)),x)==deriv(f,x)") (backchain "with(x:jj,f:[ii,uu],deriv(lambda(z:jj,f(z)),x)==deriv(f,x));") (backchain "with(f:[ii,uu],forall(x:jj,deriv(f,x)=v0));") (apply-macete-with-minor-premises locality-of-derivative) (cut-with-single-formula "forall(x:jj,a<=x and x<b)") (instantiate-existential ("b")) simplify beta-reduce-with-minor-premises simplify (instantiate-universal-antecedent "with(f:[ii,uu],total_q{f,[jj,uu]});" ("t")) (apply-macete-with-minor-premises jj-defining-axiom_mappings-from-an-interval-with-endpoints-to-a-normed-space) simplify (instantiate-universal-antecedent "forall(x:jj,a<=x and x<b);" ("x")) simplify (apply-macete-with-minor-premises jj-in-quasi-sort_mappings-from-an-interval-with-endpoints-to-a-normed-space) beta-reduce-with-minor-premises )))
(def-theorem mean-value-theorem-on-subintervals "forall(f:[jj,uu],m:rr, total_q{f,[jj,uu]} and continuous(f) and forall(x:jj,norm(deriv(f,x))<=m) implies forall(x,y:jj,norm(f(x)-f(y))<=m*abs(x-y)))" lemma (theory mappings-from-an-interval-with-endpoints-to-a-normed-space) (proof ( direct-and-antecedent-inference-strategy (cut-with-single-formula "m<0 or m=0 or 0<m") (antecedent-inference "with(m:rr,m<0 or m=0 or 0<m);") (contrapose "with(m:rr,f:[jj,uu],forall(x:jj,norm(deriv(f,x))<=m));") (instantiate-existential ("x")) (case-split ("#(deriv(f,x))")) (cut-with-single-formula "0<=norm(deriv(f,x))") simplify (apply-macete-with-minor-premises positivity-of-norm) simplify (cut-with-single-formula "f(x)=f(y)") simplify (apply-macete-with-minor-premises tr%mean-value-theorem-corollary-0) direct-and-antecedent-inference-strategy (apply-macete-with-minor-premises rev%deriv_r-restricts-deriv-lemma) (cut-with-single-formula "norm(deriv(f,x))=0") (incorporate-antecedent "norm(deriv(f,x))=0;") (apply-macete-with-minor-premises norm-zero) simplify (cut-with-single-formula "lipschitz%bound(f,m)") (incorporate-antecedent "with(m:rr,f:[jj,uu],lipschitz%bound(f,m));") (unfold-single-defined-constant (0) lipschitz%bound%jj%uu) (unfold-single-defined-constant (0) lipschitz%bound%on%jj%uu) direct-and-antecedent-inference-strategy (backchain "with(m:rr,f:[jj,uu], forall(x_$0,y_$0:jj, x_$0 in sort_to_indic{jj} and y_$0 in sort_to_indic{jj} implies norm(f(x_$0)-f(y_$0))<=m*abs(x_$0-y_$0)));") simplify (apply-macete-with-minor-premises tr%mean-value-theorem) direct-and-antecedent-inference-strategy (apply-macete-with-minor-premises rev%deriv_r-restricts-deriv-lemma) (backchain "with(m:rr,f:[jj,uu],forall(x:jj,norm(deriv(f,x))<=m));") simplify )))
(def-theorem mean-value-theorem-on-subintervals-corollary "forall(f:[ii,uu],m:rr, total_q{f,[jj,uu]} and forall(x:jj,continuous%at%point(f,x)) and forall(x:jj,norm(deriv(f,x))<=m) implies forall(x,y:jj,norm(f(x)-f(y))<=m*abs(x-y)))" (theory mappings-from-an-interval-to-a-normed-space) (home-theory mappings-from-an-interval-with-endpoints-to-a-normed-space) (usages transportable-macete) (proof ( direct-and-antecedent-inference-strategy (force-substitution "norm(f(x)-f(y))" "norm(lambda(z:jj,f(z))(x)-lambda(z:jj,f(z))(y))" (0)) (apply-macete-with-minor-premises mean-value-theorem-on-subintervals) direct-and-antecedent-inference-strategy insistent-direct-inference beta-reduce-repeatedly (apply-macete-with-minor-premises tr%eps-delta-characterization-of-continuity) direct-and-antecedent-inference-strategy (incorporate-antecedent "with(f:[ii,uu],forall(x:jj,continuous%at%point(f,x)));") unfold-defined-constants direct-and-antecedent-inference-strategy (instantiate-universal-antecedent "with(p:prop, forall(x:jj, forall(eps:rr, 0<eps implies p)))" ("x_$0")) (auto-instantiate-universal-antecedent "with(p:prop, forall(eps:rr, 0<eps implies p))") (instantiate-existential ("delta_$0")) (backchain "with(p,q:prop, forall(y_$0:ii, p implies q))") (cut-with-single-formula "forall(x:jj,deriv(lambda(z:jj,f(z)),x)==deriv(f,x))") (cut-with-single-formula "forall(x:jj,a<=x and x<b)") (backchain "with(f:[ii,uu], forall(x:jj,deriv(lambda(z:jj,f(z)),x)==deriv(f,x)));") (backchain "with(m:rr,f:[ii,uu],forall(x:jj,norm(deriv(f,x))<=m));") (apply-macete-with-minor-premises jj-in-quasi-sort_mappings-from-an-interval-with-endpoints-to-a-normed-space) (apply-macete-with-minor-premises locality-of-derivative) direct-and-antecedent-inference-strategy (instantiate-existential ("b")) (cut-with-single-formula "a<=x and x<b") (apply-macete-with-minor-premises jj-in-quasi-sort_mappings-from-an-interval-with-endpoints-to-a-normed-space) (cut-with-single-formula "#(t,jj)") beta-reduce-repeatedly (apply-macete-with-minor-premises jj-defining-axiom_mappings-from-an-interval-with-endpoints-to-a-normed-space) (cut-with-single-formula "a<=x") beta-reduce-repeatedly simplify beta-reduce-repeatedly )))
(def-theorem locality-of-integrals-lemma "forall(phi:[ii,uu],a,b:ii, a<b and integrable(phi) and forall(x:ii, a<=x and x<b implies phi(x)=v0) implies forall(x:ii, a<=x and x<b implies integral(a,x,phi)=v0))" (theory mappings-from-an-interval-to-a-normed-space) (usages transportable-macete) (proof ( direct-and-antecedent-inference-strategy (unfold-single-defined-constant (0) integral) (cut-with-single-formula "forsome(g:[ii,uu],primitive(phi,v0,a)=g)") (antecedent-inference "with(a:ii,phi:[ii,uu], forsome(g:[ii,uu],primitive(phi,v0,a)=g));") (backchain "with(g:[ii,uu],a:ii,phi:[ii,uu],primitive(phi,v0,a)=g);") (incorporate-antecedent "with(g:[ii,uu],a:ii,phi:[ii,uu],primitive(phi,v0,a)=g);") (apply-macete-with-minor-premises characterization-of-primitive) direct-and-antecedent-inference-strategy (cut-with-single-formula "forall(x,y:ii, (a<=x and x<b) and (a<=y and y<b) implies g(x)=g(y))") (backchain-backwards "with(a:ii,g:[ii,uu],g(a)=v0);") (backchain "with(g:[ii,uu],b,a:ii, forall(x,y:ii, (a<=x and x<b) and (a<=y and y<b) implies g(x)=g(y)));") simplify (apply-macete-with-minor-premises constant-on-subintervals-corollary) direct-and-antecedent-inference-strategy (instantiate-existential ("b" "a")) (incorporate-antecedent "with(g:[ii,uu],continuous(g));") (apply-macete-with-minor-premises tr%eps-delta-characterization-of-continuity) direct-and-antecedent-inference-strategy (backchain "with(g:[ii,uu],forall(x:ii,continuous%at%point(g,x)));") (backchain "with(phi,g:[ii,uu], forall(y:ii,forsome(z:ii,y<z) implies deriv(g,y)=phi(y)));") direct-inference (instantiate-existential ("b")) simplify (instantiate-existential ("b")) (instantiate-existential ("primitive(phi,v0,a)")) simplify (apply-macete-with-minor-premises integrability-condition) (instantiate-existential ("b")) )))
(def-theorem locality-of-integrals "forall(phi,psi:[ii,uu],a,b:ii, a<b and integrable(phi) and integrable(psi) and forall(x:ii, a<=x and x<b implies phi(x)=psi(x)) implies forall(x:ii, a<=x and x<b implies integral(a,x,phi)=integral(a,x,psi)))" (theory mappings-from-an-interval-to-a-normed-space) (usages transportable-macete) (proof ( direct-and-antecedent-inference-strategy (cut-with-single-formula "integral(a,x,lambda(x:ii,phi(x)-psi(x)))=v0") (incorporate-antecedent "with(psi,phi:[ii,uu],x,a:ii, integral(a,x,lambda(x:ii,phi(x)-psi(x)))=v0);") simplify (force-substitution "[-1]*psi(x)" "lambda(x:ii,[-1]*psi(x))(x)" (0)) (apply-macete-with-minor-premises additivity-of-integral) (apply-macete-with-minor-premises homogeneity-of-integral) simplify (instantiate-existential ("b")) (apply-macete-with-minor-premises integrable-implies-integral-exists) (instantiate-existential ("b")) (apply-macete-with-minor-premises homogeneity-of-integral) simplify (apply-macete-with-minor-premises integrable-implies-integral-exists) (instantiate-existential ("b")) simplify (apply-macete-with-minor-premises locality-of-integrals-lemma) (unfold-single-defined-constant (0) integrable) (cut-with-single-formula "#(integral(a,b,lambda(x:ii,phi(x)+[-1]*psi(x))))") (incorporate-antecedent "with(psi,phi:[ii,uu],b,a:ii, #(integral(a,b,lambda(x:ii,phi(x)+[-1]*psi(x)))));") (unfold-single-defined-constant (0) integral) direct-and-antecedent-inference-strategy (instantiate-existential ("v0" "a" "b")) (force-substitution "[-1]*psi(x)" "lambda(x:ii,[-1]*psi(x))(x)" (0)) (apply-macete-with-minor-premises additivity-of-integral) (apply-macete-with-minor-premises homogeneity-of-integral) simplify (apply-macete-with-minor-premises integrable-implies-integral-exists) direct-and-antecedent-inference-strategy (apply-macete-with-minor-premises integrable-implies-integral-exists) (apply-macete-with-minor-premises homogeneity-of-integral) simplify (apply-macete-with-minor-premises integrable-implies-integral-exists) )))